Summary: | In the current exploration, the impact of the 100 to 125 micron size addition of silicon carbide (SiC) on the mechanical performance of Al6061 alloy has been studied. The Al6061 alloy dispersed with 6, 9, and 12 wt.% of SiC particles were synthesized by a two-step stir cast route. Two-step addition of the preheated particles into the melt helps avoid the agglomeration of the particles, which further contributes to enhancing the properties of composites. The orchestrated composites were exposed to microstructural examines and mechanical properties evaluation. Microstructural portrayals of acquired examples were completed by SEM microscopy, EDS, and XRD patterns. The event of SiC particles were affirmed by the XRD patterns. The density of the Al6061-SiC composites was increased with the addition of high-density silicon carbide particles. The hardness, ultimate, and yield qualities of metal composites have been improved with the increase in the content of SiC support. The ductility of SiC reinforced composites decreased with hard ceramic particles' incorporation in the Al matrix alloy. Various fracture mechanisms were observed in the Al6061-SiC composites using SEM.
|