Quantum Foundations of Classical Reversible Computing
The reversible computation paradigm aims to provide a new foundation for general classical digital computing that is capable of circumventing the thermodynamic limits to the energy efficiency of the conventional, non-reversible digital paradigm. However, to date, the essential rationale for, and ana...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-06-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/23/6/701 |
_version_ | 1797531713019052032 |
---|---|
author | Michael P. Frank Karpur Shukla |
author_facet | Michael P. Frank Karpur Shukla |
author_sort | Michael P. Frank |
collection | DOAJ |
description | The reversible computation paradigm aims to provide a new foundation for general classical digital computing that is capable of circumventing the thermodynamic limits to the energy efficiency of the conventional, non-reversible digital paradigm. However, to date, the essential rationale for, and analysis of, classical reversible computing (RC) has not yet been expressed in terms that leverage the modern formal methods of non-equilibrium quantum thermodynamics (NEQT). In this paper, we begin developing an NEQT-based foundation for the physics of reversible computing. We use the framework of Gorini-Kossakowski-Sudarshan-Lindblad dynamics (a.k.a. <i>Lindbladians</i>) with multiple asymptotic states, incorporating recent results from resource theory, full counting statistics and stochastic thermodynamics. Important conclusions include that, as expected: (1) Landauer’s Principle indeed sets a strict lower bound on entropy generation in traditional non-reversible architectures for deterministic computing machines when we account for the loss of correlations; and (2) implementations of the alternative <i>reversible</i> computation paradigm can potentially avoid such losses, and thereby circumvent the Landauer limit, potentially allowing the efficiency of future digital computing technologies to continue improving indefinitely. We also outline a research plan for identifying the fundamental minimum energy dissipation of reversible computing machines as a function of speed. |
first_indexed | 2024-03-10T10:47:40Z |
format | Article |
id | doaj.art-3b88dd38c01f40a5be923e041e0ec28c |
institution | Directory Open Access Journal |
issn | 1099-4300 |
language | English |
last_indexed | 2024-03-10T10:47:40Z |
publishDate | 2021-06-01 |
publisher | MDPI AG |
record_format | Article |
series | Entropy |
spelling | doaj.art-3b88dd38c01f40a5be923e041e0ec28c2023-11-21T22:26:34ZengMDPI AGEntropy1099-43002021-06-0123670110.3390/e23060701Quantum Foundations of Classical Reversible ComputingMichael P. Frank0Karpur Shukla1Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87185, USADepartment of Electrical and Computer Engineering, Brown University, Providence, RI 02906, USAThe reversible computation paradigm aims to provide a new foundation for general classical digital computing that is capable of circumventing the thermodynamic limits to the energy efficiency of the conventional, non-reversible digital paradigm. However, to date, the essential rationale for, and analysis of, classical reversible computing (RC) has not yet been expressed in terms that leverage the modern formal methods of non-equilibrium quantum thermodynamics (NEQT). In this paper, we begin developing an NEQT-based foundation for the physics of reversible computing. We use the framework of Gorini-Kossakowski-Sudarshan-Lindblad dynamics (a.k.a. <i>Lindbladians</i>) with multiple asymptotic states, incorporating recent results from resource theory, full counting statistics and stochastic thermodynamics. Important conclusions include that, as expected: (1) Landauer’s Principle indeed sets a strict lower bound on entropy generation in traditional non-reversible architectures for deterministic computing machines when we account for the loss of correlations; and (2) implementations of the alternative <i>reversible</i> computation paradigm can potentially avoid such losses, and thereby circumvent the Landauer limit, potentially allowing the efficiency of future digital computing technologies to continue improving indefinitely. We also outline a research plan for identifying the fundamental minimum energy dissipation of reversible computing machines as a function of speed.https://www.mdpi.com/1099-4300/23/6/701non-equilibrium quantum thermodynamicsthermodynamics of computingLandauer’s principleLandauer limitreversible computingresource theory of quantum thermodynamics |
spellingShingle | Michael P. Frank Karpur Shukla Quantum Foundations of Classical Reversible Computing Entropy non-equilibrium quantum thermodynamics thermodynamics of computing Landauer’s principle Landauer limit reversible computing resource theory of quantum thermodynamics |
title | Quantum Foundations of Classical Reversible Computing |
title_full | Quantum Foundations of Classical Reversible Computing |
title_fullStr | Quantum Foundations of Classical Reversible Computing |
title_full_unstemmed | Quantum Foundations of Classical Reversible Computing |
title_short | Quantum Foundations of Classical Reversible Computing |
title_sort | quantum foundations of classical reversible computing |
topic | non-equilibrium quantum thermodynamics thermodynamics of computing Landauer’s principle Landauer limit reversible computing resource theory of quantum thermodynamics |
url | https://www.mdpi.com/1099-4300/23/6/701 |
work_keys_str_mv | AT michaelpfrank quantumfoundationsofclassicalreversiblecomputing AT karpurshukla quantumfoundationsofclassicalreversiblecomputing |