Measurement of Optical Rubidium Clock Frequency Spanning 65 Days

Optical clocks are emerging as next-generation timekeeping devices with technological and scientific use cases. Simplified atomic sources such as vapor cells may offer a straightforward path to field use, but suffer from long-term frequency drifts and environmental sensitivities. Here, we measure a...

Full description

Bibliographic Details
Main Authors: Nathan D. Lemke, Kyle W. Martin, River Beard, Benjamin K. Stuhl, Andrew J. Metcalf, John D. Elgin
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/5/1982
_version_ 1797473704431583232
author Nathan D. Lemke
Kyle W. Martin
River Beard
Benjamin K. Stuhl
Andrew J. Metcalf
John D. Elgin
author_facet Nathan D. Lemke
Kyle W. Martin
River Beard
Benjamin K. Stuhl
Andrew J. Metcalf
John D. Elgin
author_sort Nathan D. Lemke
collection DOAJ
description Optical clocks are emerging as next-generation timekeeping devices with technological and scientific use cases. Simplified atomic sources such as vapor cells may offer a straightforward path to field use, but suffer from long-term frequency drifts and environmental sensitivities. Here, we measure a laboratory optical clock based on warm rubidium atoms and find low levels of drift on the month-long timescale. We observe and quantify helium contamination inside the glass vapor cell by gradually removing the helium via a vacuum apparatus. We quantify a drift rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>15</mn></mrow></msup></mrow></semantics></math></inline-formula>/day, a 10 day Allan deviation less than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>15</mn></mrow></msup></mrow></semantics></math></inline-formula>, and an absolute frequency of the Rb-87 two-photon clock transition of 385,284,566,371,190(1970) Hz. These results support the premise that optical vapor cell clocks will be able to meet future technology needs in navigation and communications as sensors of time and frequency.
first_indexed 2024-03-09T20:20:14Z
format Article
id doaj.art-3b90ec007e414e4bb6717f345c3b5d7b
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-09T20:20:14Z
publishDate 2022-03-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-3b90ec007e414e4bb6717f345c3b5d7b2023-11-23T23:49:20ZengMDPI AGSensors1424-82202022-03-01225198210.3390/s22051982Measurement of Optical Rubidium Clock Frequency Spanning 65 DaysNathan D. Lemke0Kyle W. Martin1River Beard2Benjamin K. Stuhl3Andrew J. Metcalf4John D. Elgin5Department of Physics and Engineering, Bethel University, St. Paul, MN 55112, USABlue Halo, Albuquerque, NM 87123, USABlue Halo, Albuquerque, NM 87123, USASpace Vehicles Directorate, Air Force Research Laboratory, Kirtland Air Force Base, Albuquerque, NM 87117, USASpace Vehicles Directorate, Air Force Research Laboratory, Kirtland Air Force Base, Albuquerque, NM 87117, USASpace Vehicles Directorate, Air Force Research Laboratory, Kirtland Air Force Base, Albuquerque, NM 87117, USAOptical clocks are emerging as next-generation timekeeping devices with technological and scientific use cases. Simplified atomic sources such as vapor cells may offer a straightforward path to field use, but suffer from long-term frequency drifts and environmental sensitivities. Here, we measure a laboratory optical clock based on warm rubidium atoms and find low levels of drift on the month-long timescale. We observe and quantify helium contamination inside the glass vapor cell by gradually removing the helium via a vacuum apparatus. We quantify a drift rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>15</mn></mrow></msup></mrow></semantics></math></inline-formula>/day, a 10 day Allan deviation less than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>15</mn></mrow></msup></mrow></semantics></math></inline-formula>, and an absolute frequency of the Rb-87 two-photon clock transition of 385,284,566,371,190(1970) Hz. These results support the premise that optical vapor cell clocks will be able to meet future technology needs in navigation and communications as sensors of time and frequency.https://www.mdpi.com/1424-8220/22/5/1982atomic clockhelium permeationtwo-photon spectroscopy
spellingShingle Nathan D. Lemke
Kyle W. Martin
River Beard
Benjamin K. Stuhl
Andrew J. Metcalf
John D. Elgin
Measurement of Optical Rubidium Clock Frequency Spanning 65 Days
Sensors
atomic clock
helium permeation
two-photon spectroscopy
title Measurement of Optical Rubidium Clock Frequency Spanning 65 Days
title_full Measurement of Optical Rubidium Clock Frequency Spanning 65 Days
title_fullStr Measurement of Optical Rubidium Clock Frequency Spanning 65 Days
title_full_unstemmed Measurement of Optical Rubidium Clock Frequency Spanning 65 Days
title_short Measurement of Optical Rubidium Clock Frequency Spanning 65 Days
title_sort measurement of optical rubidium clock frequency spanning 65 days
topic atomic clock
helium permeation
two-photon spectroscopy
url https://www.mdpi.com/1424-8220/22/5/1982
work_keys_str_mv AT nathandlemke measurementofopticalrubidiumclockfrequencyspanning65days
AT kylewmartin measurementofopticalrubidiumclockfrequencyspanning65days
AT riverbeard measurementofopticalrubidiumclockfrequencyspanning65days
AT benjaminkstuhl measurementofopticalrubidiumclockfrequencyspanning65days
AT andrewjmetcalf measurementofopticalrubidiumclockfrequencyspanning65days
AT johndelgin measurementofopticalrubidiumclockfrequencyspanning65days