Measurement of Optical Rubidium Clock Frequency Spanning 65 Days
Optical clocks are emerging as next-generation timekeeping devices with technological and scientific use cases. Simplified atomic sources such as vapor cells may offer a straightforward path to field use, but suffer from long-term frequency drifts and environmental sensitivities. Here, we measure a...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-03-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/22/5/1982 |
_version_ | 1797473704431583232 |
---|---|
author | Nathan D. Lemke Kyle W. Martin River Beard Benjamin K. Stuhl Andrew J. Metcalf John D. Elgin |
author_facet | Nathan D. Lemke Kyle W. Martin River Beard Benjamin K. Stuhl Andrew J. Metcalf John D. Elgin |
author_sort | Nathan D. Lemke |
collection | DOAJ |
description | Optical clocks are emerging as next-generation timekeeping devices with technological and scientific use cases. Simplified atomic sources such as vapor cells may offer a straightforward path to field use, but suffer from long-term frequency drifts and environmental sensitivities. Here, we measure a laboratory optical clock based on warm rubidium atoms and find low levels of drift on the month-long timescale. We observe and quantify helium contamination inside the glass vapor cell by gradually removing the helium via a vacuum apparatus. We quantify a drift rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>15</mn></mrow></msup></mrow></semantics></math></inline-formula>/day, a 10 day Allan deviation less than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>15</mn></mrow></msup></mrow></semantics></math></inline-formula>, and an absolute frequency of the Rb-87 two-photon clock transition of 385,284,566,371,190(1970) Hz. These results support the premise that optical vapor cell clocks will be able to meet future technology needs in navigation and communications as sensors of time and frequency. |
first_indexed | 2024-03-09T20:20:14Z |
format | Article |
id | doaj.art-3b90ec007e414e4bb6717f345c3b5d7b |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-09T20:20:14Z |
publishDate | 2022-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-3b90ec007e414e4bb6717f345c3b5d7b2023-11-23T23:49:20ZengMDPI AGSensors1424-82202022-03-01225198210.3390/s22051982Measurement of Optical Rubidium Clock Frequency Spanning 65 DaysNathan D. Lemke0Kyle W. Martin1River Beard2Benjamin K. Stuhl3Andrew J. Metcalf4John D. Elgin5Department of Physics and Engineering, Bethel University, St. Paul, MN 55112, USABlue Halo, Albuquerque, NM 87123, USABlue Halo, Albuquerque, NM 87123, USASpace Vehicles Directorate, Air Force Research Laboratory, Kirtland Air Force Base, Albuquerque, NM 87117, USASpace Vehicles Directorate, Air Force Research Laboratory, Kirtland Air Force Base, Albuquerque, NM 87117, USASpace Vehicles Directorate, Air Force Research Laboratory, Kirtland Air Force Base, Albuquerque, NM 87117, USAOptical clocks are emerging as next-generation timekeeping devices with technological and scientific use cases. Simplified atomic sources such as vapor cells may offer a straightforward path to field use, but suffer from long-term frequency drifts and environmental sensitivities. Here, we measure a laboratory optical clock based on warm rubidium atoms and find low levels of drift on the month-long timescale. We observe and quantify helium contamination inside the glass vapor cell by gradually removing the helium via a vacuum apparatus. We quantify a drift rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>15</mn></mrow></msup></mrow></semantics></math></inline-formula>/day, a 10 day Allan deviation less than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>15</mn></mrow></msup></mrow></semantics></math></inline-formula>, and an absolute frequency of the Rb-87 two-photon clock transition of 385,284,566,371,190(1970) Hz. These results support the premise that optical vapor cell clocks will be able to meet future technology needs in navigation and communications as sensors of time and frequency.https://www.mdpi.com/1424-8220/22/5/1982atomic clockhelium permeationtwo-photon spectroscopy |
spellingShingle | Nathan D. Lemke Kyle W. Martin River Beard Benjamin K. Stuhl Andrew J. Metcalf John D. Elgin Measurement of Optical Rubidium Clock Frequency Spanning 65 Days Sensors atomic clock helium permeation two-photon spectroscopy |
title | Measurement of Optical Rubidium Clock Frequency Spanning 65 Days |
title_full | Measurement of Optical Rubidium Clock Frequency Spanning 65 Days |
title_fullStr | Measurement of Optical Rubidium Clock Frequency Spanning 65 Days |
title_full_unstemmed | Measurement of Optical Rubidium Clock Frequency Spanning 65 Days |
title_short | Measurement of Optical Rubidium Clock Frequency Spanning 65 Days |
title_sort | measurement of optical rubidium clock frequency spanning 65 days |
topic | atomic clock helium permeation two-photon spectroscopy |
url | https://www.mdpi.com/1424-8220/22/5/1982 |
work_keys_str_mv | AT nathandlemke measurementofopticalrubidiumclockfrequencyspanning65days AT kylewmartin measurementofopticalrubidiumclockfrequencyspanning65days AT riverbeard measurementofopticalrubidiumclockfrequencyspanning65days AT benjaminkstuhl measurementofopticalrubidiumclockfrequencyspanning65days AT andrewjmetcalf measurementofopticalrubidiumclockfrequencyspanning65days AT johndelgin measurementofopticalrubidiumclockfrequencyspanning65days |