Environmental Air Pollutants Affecting Skin Functions with Systemic Implications
The increase in air pollution worldwide represents an environmental risk factor that has global implications for the health of humans worldwide. The skin of billions of people is exposed to a mixture of harmful air pollutants, which can affect its physiology and are responsible for cutaneous damage....
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-06-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/24/13/10502 |
_version_ | 1797591617534689280 |
---|---|
author | Georgeta Bocheva Radomir M. Slominski Andrzej T. Slominski |
author_facet | Georgeta Bocheva Radomir M. Slominski Andrzej T. Slominski |
author_sort | Georgeta Bocheva |
collection | DOAJ |
description | The increase in air pollution worldwide represents an environmental risk factor that has global implications for the health of humans worldwide. The skin of billions of people is exposed to a mixture of harmful air pollutants, which can affect its physiology and are responsible for cutaneous damage. Some polycyclic aromatic hydrocarbons are photoreactive and could be activated by ultraviolet radiation (UVR). Therefore, such UVR exposure would enhance their deleterious effects on the skin. Air pollution also affects vitamin D synthesis by reducing UVB radiation, which is essential for the production of vitamin D<sub>3</sub>, tachysterol, and lumisterol derivatives. Ambient air pollutants, photopollution, blue-light pollution, and cigarette smoke compromise cutaneous structural integrity, can interact with human skin microbiota, and trigger or exacerbate a range of skin diseases through various mechanisms. Generally, air pollution elicits an oxidative stress response on the skin that can activate the inflammatory responses. The aryl hydrocarbon receptor (AhR) can act as a sensor for small molecules such as air pollutants and plays a crucial role in responses to (photo)pollution. On the other hand, targeting AhR/Nrf2 is emerging as a novel treatment option for air pollutants that induce or exacerbate inflammatory skin diseases. Therefore, AhR with downstream regulatory pathways would represent a crucial signaling system regulating the skin phenotype in a Yin and Yang fashion defined by the chemical nature of the activating factor and the cellular and tissue context. |
first_indexed | 2024-03-11T01:39:51Z |
format | Article |
id | doaj.art-3ba16a7942c54f6c82342925cb1a8292 |
institution | Directory Open Access Journal |
issn | 1661-6596 1422-0067 |
language | English |
last_indexed | 2024-03-11T01:39:51Z |
publishDate | 2023-06-01 |
publisher | MDPI AG |
record_format | Article |
series | International Journal of Molecular Sciences |
spelling | doaj.art-3ba16a7942c54f6c82342925cb1a82922023-11-18T16:39:08ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672023-06-0124131050210.3390/ijms241310502Environmental Air Pollutants Affecting Skin Functions with Systemic ImplicationsGeorgeta Bocheva0Radomir M. Slominski1Andrzej T. Slominski2Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, BulgariaDepartment of Genetics, Informatics Institute in the School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USADepartment of Dermatology, Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USAThe increase in air pollution worldwide represents an environmental risk factor that has global implications for the health of humans worldwide. The skin of billions of people is exposed to a mixture of harmful air pollutants, which can affect its physiology and are responsible for cutaneous damage. Some polycyclic aromatic hydrocarbons are photoreactive and could be activated by ultraviolet radiation (UVR). Therefore, such UVR exposure would enhance their deleterious effects on the skin. Air pollution also affects vitamin D synthesis by reducing UVB radiation, which is essential for the production of vitamin D<sub>3</sub>, tachysterol, and lumisterol derivatives. Ambient air pollutants, photopollution, blue-light pollution, and cigarette smoke compromise cutaneous structural integrity, can interact with human skin microbiota, and trigger or exacerbate a range of skin diseases through various mechanisms. Generally, air pollution elicits an oxidative stress response on the skin that can activate the inflammatory responses. The aryl hydrocarbon receptor (AhR) can act as a sensor for small molecules such as air pollutants and plays a crucial role in responses to (photo)pollution. On the other hand, targeting AhR/Nrf2 is emerging as a novel treatment option for air pollutants that induce or exacerbate inflammatory skin diseases. Therefore, AhR with downstream regulatory pathways would represent a crucial signaling system regulating the skin phenotype in a Yin and Yang fashion defined by the chemical nature of the activating factor and the cellular and tissue context.https://www.mdpi.com/1422-0067/24/13/10502air pollutantsphotopollutioncigarette smokeAhRskin diseases |
spellingShingle | Georgeta Bocheva Radomir M. Slominski Andrzej T. Slominski Environmental Air Pollutants Affecting Skin Functions with Systemic Implications International Journal of Molecular Sciences air pollutants photopollution cigarette smoke AhR skin diseases |
title | Environmental Air Pollutants Affecting Skin Functions with Systemic Implications |
title_full | Environmental Air Pollutants Affecting Skin Functions with Systemic Implications |
title_fullStr | Environmental Air Pollutants Affecting Skin Functions with Systemic Implications |
title_full_unstemmed | Environmental Air Pollutants Affecting Skin Functions with Systemic Implications |
title_short | Environmental Air Pollutants Affecting Skin Functions with Systemic Implications |
title_sort | environmental air pollutants affecting skin functions with systemic implications |
topic | air pollutants photopollution cigarette smoke AhR skin diseases |
url | https://www.mdpi.com/1422-0067/24/13/10502 |
work_keys_str_mv | AT georgetabocheva environmentalairpollutantsaffectingskinfunctionswithsystemicimplications AT radomirmslominski environmentalairpollutantsaffectingskinfunctionswithsystemicimplications AT andrzejtslominski environmentalairpollutantsaffectingskinfunctionswithsystemicimplications |