Large-scale experimental warming reduces soil faunal biodiversity through peatland drying
Boreal peatlands are important ecosystems for carbon cycling because they store 1/3 of the world’s terrestrial carbon in only ∼3% of the global landmass. This high carbon storage capacity makes them a key potential mitigation strategy for increased carbon emissions induced by global climate warming....
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2023-04-01
|
Series: | Frontiers in Environmental Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fenvs.2023.1153683/full |
_version_ | 1797843766951804928 |
---|---|
author | Carlos Barreto Carlos Barreto Pedro Henrique Silva Conceição Estevam Cipriano Araujo de Lima Luís Carlos Stievano Douglas Zeppelini Randall K. Kolka Paul J. Hanson Zoë Lindo |
author_facet | Carlos Barreto Carlos Barreto Pedro Henrique Silva Conceição Estevam Cipriano Araujo de Lima Luís Carlos Stievano Douglas Zeppelini Randall K. Kolka Paul J. Hanson Zoë Lindo |
author_sort | Carlos Barreto |
collection | DOAJ |
description | Boreal peatlands are important ecosystems for carbon cycling because they store 1/3 of the world’s terrestrial carbon in only ∼3% of the global landmass. This high carbon storage capacity makes them a key potential mitigation strategy for increased carbon emissions induced by global climate warming. In high-carbon storage systems like peatlands, soil faunal communities are responsible for secondary decomposition of organic matter and nutrient cycling, which suggests they play an important role in the carbon cycle. Experiments have shown that warming can affect plant and microbial communities in ways that potentially shift peatlands from carbon sinks to sources. Although previous studies have found variable effects of climate change manipulations on soil communities, warming is expected to affect soil community composition mainly through reductions in moisture content, whereas elevated CO2 atmospheric concentrations are expected to only indirectly and weakly do so. In this study we used a large-scale peatland field-based experiment to test how soil microarthropod (oribatid and mesostigmatid mite, and collembolan species abundance, richness and community composition) respond to a range of experimental warming temperatures (between 0°C and +9°C) crossed with elevated CO2 conditions over 4 years in the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. Here we found that warming significantly decreased surface peat moisture, which in turn decreased species microarthropod richness and abundance. Specifically, oribatid and mesostigmatid mite, collembolan, and overall microarthropod richness significantly decreased under lower moisture levels. Also, the abundance of microarthropods increased under higher moisture levels. Neither warming nor elevated [CO2] affected microarthropods when analysed together or separate, except for the richness of mesostigmatids that significantly increased under warming. At the community level, communities varied significantly over time (except collembolans), and moisture was an important driver explaining community species composition. While we expect that the cumulative and interactive effects of the SPRUCE experimental treatments on soil faunal biodiversity will continue to emerge, our results already suggest effects are becoming more observable over time. Taken together, the changes belowground indicate potential changes on carbon and nitrogen cycles, as microarthropods are important players of soil food webs. |
first_indexed | 2024-04-09T17:11:15Z |
format | Article |
id | doaj.art-3bbbb9cbbf4540eb8d2214406504e07d |
institution | Directory Open Access Journal |
issn | 2296-665X |
language | English |
last_indexed | 2024-04-09T17:11:15Z |
publishDate | 2023-04-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Environmental Science |
spelling | doaj.art-3bbbb9cbbf4540eb8d2214406504e07d2023-04-20T05:55:23ZengFrontiers Media S.A.Frontiers in Environmental Science2296-665X2023-04-011110.3389/fenvs.2023.11536831153683Large-scale experimental warming reduces soil faunal biodiversity through peatland dryingCarlos Barreto0Carlos Barreto1Pedro Henrique Silva Conceição2Estevam Cipriano Araujo de Lima3Luís Carlos Stievano4Douglas Zeppelini5Randall K. Kolka6Paul J. Hanson7Zoë Lindo8Soil Biodiversity and Ecosystem Function Lab, Department of Biology, University of Western Ontario, London, ON, CanadaPlant and Soil Ecology Lab, Department of Biology, Algoma University, Sault Ste. Marie, ON, CanadaSoil Biodiversity and Ecosystem Function Lab, Department of Biology, University of Western Ontario, London, ON, CanadaLaboratório de Sistemática de Collembola e Conservação, Coleção de Referência de Fauna de Solo, Instituto de Biologia de Solo, Universidade Estadual da Paraíba, Campus V, João Pessoa, BrazilLaboratório de Sistemática de Collembola e Conservação, Coleção de Referência de Fauna de Solo, Instituto de Biologia de Solo, Universidade Estadual da Paraíba, Campus V, João Pessoa, BrazilLaboratório de Sistemática de Collembola e Conservação, Coleção de Referência de Fauna de Solo, Instituto de Biologia de Solo, Universidade Estadual da Paraíba, Campus V, João Pessoa, BrazilNorthern Research Station, US Department of Agriculture Forest Service, Grand Rapids, MN, United StatesOak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, United StatesSoil Biodiversity and Ecosystem Function Lab, Department of Biology, University of Western Ontario, London, ON, CanadaBoreal peatlands are important ecosystems for carbon cycling because they store 1/3 of the world’s terrestrial carbon in only ∼3% of the global landmass. This high carbon storage capacity makes them a key potential mitigation strategy for increased carbon emissions induced by global climate warming. In high-carbon storage systems like peatlands, soil faunal communities are responsible for secondary decomposition of organic matter and nutrient cycling, which suggests they play an important role in the carbon cycle. Experiments have shown that warming can affect plant and microbial communities in ways that potentially shift peatlands from carbon sinks to sources. Although previous studies have found variable effects of climate change manipulations on soil communities, warming is expected to affect soil community composition mainly through reductions in moisture content, whereas elevated CO2 atmospheric concentrations are expected to only indirectly and weakly do so. In this study we used a large-scale peatland field-based experiment to test how soil microarthropod (oribatid and mesostigmatid mite, and collembolan species abundance, richness and community composition) respond to a range of experimental warming temperatures (between 0°C and +9°C) crossed with elevated CO2 conditions over 4 years in the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. Here we found that warming significantly decreased surface peat moisture, which in turn decreased species microarthropod richness and abundance. Specifically, oribatid and mesostigmatid mite, collembolan, and overall microarthropod richness significantly decreased under lower moisture levels. Also, the abundance of microarthropods increased under higher moisture levels. Neither warming nor elevated [CO2] affected microarthropods when analysed together or separate, except for the richness of mesostigmatids that significantly increased under warming. At the community level, communities varied significantly over time (except collembolans), and moisture was an important driver explaining community species composition. While we expect that the cumulative and interactive effects of the SPRUCE experimental treatments on soil faunal biodiversity will continue to emerge, our results already suggest effects are becoming more observable over time. Taken together, the changes belowground indicate potential changes on carbon and nitrogen cycles, as microarthropods are important players of soil food webs.https://www.frontiersin.org/articles/10.3389/fenvs.2023.1153683/fullclimate changeboreal zonemicroarthropodscommunity ecologybogwetland |
spellingShingle | Carlos Barreto Carlos Barreto Pedro Henrique Silva Conceição Estevam Cipriano Araujo de Lima Luís Carlos Stievano Douglas Zeppelini Randall K. Kolka Paul J. Hanson Zoë Lindo Large-scale experimental warming reduces soil faunal biodiversity through peatland drying Frontiers in Environmental Science climate change boreal zone microarthropods community ecology bog wetland |
title | Large-scale experimental warming reduces soil faunal biodiversity through peatland drying |
title_full | Large-scale experimental warming reduces soil faunal biodiversity through peatland drying |
title_fullStr | Large-scale experimental warming reduces soil faunal biodiversity through peatland drying |
title_full_unstemmed | Large-scale experimental warming reduces soil faunal biodiversity through peatland drying |
title_short | Large-scale experimental warming reduces soil faunal biodiversity through peatland drying |
title_sort | large scale experimental warming reduces soil faunal biodiversity through peatland drying |
topic | climate change boreal zone microarthropods community ecology bog wetland |
url | https://www.frontiersin.org/articles/10.3389/fenvs.2023.1153683/full |
work_keys_str_mv | AT carlosbarreto largescaleexperimentalwarmingreducessoilfaunalbiodiversitythroughpeatlanddrying AT carlosbarreto largescaleexperimentalwarmingreducessoilfaunalbiodiversitythroughpeatlanddrying AT pedrohenriquesilvaconceicao largescaleexperimentalwarmingreducessoilfaunalbiodiversitythroughpeatlanddrying AT estevamciprianoaraujodelima largescaleexperimentalwarmingreducessoilfaunalbiodiversitythroughpeatlanddrying AT luiscarlosstievano largescaleexperimentalwarmingreducessoilfaunalbiodiversitythroughpeatlanddrying AT douglaszeppelini largescaleexperimentalwarmingreducessoilfaunalbiodiversitythroughpeatlanddrying AT randallkkolka largescaleexperimentalwarmingreducessoilfaunalbiodiversitythroughpeatlanddrying AT pauljhanson largescaleexperimentalwarmingreducessoilfaunalbiodiversitythroughpeatlanddrying AT zoelindo largescaleexperimentalwarmingreducessoilfaunalbiodiversitythroughpeatlanddrying |