An in silico study of how histone tail conformation affects the binding affinity of ING family proteins

Background Due to its intrinsically disordered nature, the histone tail is conformationally heterogenic. Therefore, it provides specific binding sites for different binding proteins or factors through reversible post-translational modifications (PTMs). For instance, experimental studies stated that...

Full description

Bibliographic Details
Main Authors: Nadir Gül, Ahmet Yıldız
Format: Article
Language:English
Published: PeerJ Inc. 2022-09-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/14029.pdf
Description
Summary:Background Due to its intrinsically disordered nature, the histone tail is conformationally heterogenic. Therefore, it provides specific binding sites for different binding proteins or factors through reversible post-translational modifications (PTMs). For instance, experimental studies stated that the ING family binds with the histone tail that has methylation on the lysine in position 4. However, numerous complexes featuring a methylated fourth lysine residue of the histone tail can be found in the UniProt database. So the question arose if other factors like the conformation of the histone tail affect the binding affinity. Methods The crystal structure of the PHD finger domain from the proteins ING1, ING2, ING4, and ING5 are docked to four histone H3 tails with two different conformations using Haddock 2.4 and ClusPro. The best four models for each combination are selected and a two-sample t-test is performed to compare the binding affinities of helical conformations vs. linear conformations using Prodigy. The protein-protein interactions are examined using LigPlot. Results The linear histone conformations in predicted INGs-histone H3 complexes exhibit statistically significant higher binding affinity than their helical counterparts (confidence level of 99%). The outputs of predicted models generated by the molecular docking programs Haddock 2.4 and ClusPro are comparable, and the obtained protein-protein interaction patterns are consistent with experimentally confirmed binding patterns. Conclusion The results show that the conformation of the histone tail is significantly affecting the binding affinity of the docking protein. Herewith, this in silico study demonstrated in detail the binding preference of the ING protein family to histone H3 tail. Further research on the effect of certain PTMs on the final tail conformation and the interaction between those factors seem to be promising for a better understanding of epigenetics.
ISSN:2167-8359