Formulation of the Alpha Sliding Innovation Filter: A Robust Linear Estimation Strategy

In this paper, a new filter referred to as the alpha sliding innovation filter (ASIF) is presented. The sliding innovation filter (SIF) is a newly developed estimation strategy that uses innovation or measurement error as a switching hyperplane. It is a sub-optimal filter that provides a robust and...

Full description

Bibliographic Details
Main Authors: Mohammad AlShabi, Stephen Andrew Gadsden
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/22/8927
Description
Summary:In this paper, a new filter referred to as the alpha sliding innovation filter (ASIF) is presented. The sliding innovation filter (SIF) is a newly developed estimation strategy that uses innovation or measurement error as a switching hyperplane. It is a sub-optimal filter that provides a robust and stable estimate. In this paper, the SIF is reformulated by including a forgetting factor, which significantly improves estimation performance. The proposed ASIF is applied to several systems including a first-order thermometer, a second-order spring-mass-damper, and a third-order electrohydrostatic actuator (EHA) that was built for experimentation. The proposed ASIF provides an improvement in estimation accuracy while maintaining robustness to modeling uncertainties and disturbances.
ISSN:1424-8220