Summary: | CoCrNi equiatomic medium entropy alloy sheets were prepared by asymmetric rolling, cryorolling, and asymmetric cryorolling. The asymmetric cryorolled samples exhibited a noteworthy ultra-fine-grain heterogeneous lamella structure. The microstructure and corresponding hardness obtained by different rolling processes and subsequent annealing are compared. It can be seen from the results that the cryogenic deformation temperature had a stronger effect on the mechanical properties of the medium entropy alloys (MEA), compared with the shear strain caused by the asymmetric cryorolling. The effect of annealing temperature on texture components and volume fractions of the specially rolled samples was also analyzed. The result revealed that the recrystallized MEA exhibited similar texture components and the corresponding volume fraction, which indicated that the rolling process had limited influence on the formation of annealing texture. The recrystallized texture after annealing retained the deformation texture and twin related orientations appeared. Asymmetric rolled MEA showed strong random composition than symmetric rolled MEA regardless of rolling temperature. The recrystallized textures of the species obtained by the three rolling processes did not exhibit a significant dependence on the annealing temperature.
|