Peanut and cotton intercropping increases productivity and economic returns through regulating plant nutrient accumulation and soil microbial communities

Abstract Background Intercropping (IC) has been widely adopted by farmers for enhancing crop productivity and economic returns; however, the underpinning mechanisms from the perspective of below-ground interspecific interactions are only partly understood especially when intercropping practices unde...

Full description

Bibliographic Details
Main Authors: Wei Xie, Kai Zhang, Xiaoying Wang, Xiaoxia Zou, Xiaojun Zhang, Xiaona Yu, Yuefu Wang, Tong Si
Format: Article
Language:English
Published: BMC 2022-03-01
Series:BMC Plant Biology
Subjects:
Online Access:https://doi.org/10.1186/s12870-022-03506-y
Description
Summary:Abstract Background Intercropping (IC) has been widely adopted by farmers for enhancing crop productivity and economic returns; however, the underpinning mechanisms from the perspective of below-ground interspecific interactions are only partly understood especially when intercropping practices under saline soil conditions. By using permeable (100 μm) and impermeable (solid) root barriers in a multi-site field experiment, we aimed to study the impact of root-root interactions on nutrient accumulation, soil microbial communities, crop yield, and economic returns in a peanut/cotton IC system under non-saline, secondary-saline, and coastal saline soil conditions of China. Results The results indicate that IC decreased the peanut pods yield by 14.00, 10.01, and 16.52% while increased the seed cotton yield by 61.99, 66.00, and 58.51%, respectively in three experimental positions, and consequently enhanced the economic returns by compared with monoculture of peanut (MP) and cotton (MC). The higher accumulations of nutrients such as nitrogen (N), phosphorus (P), and potassium (K) were also observed in IC not only in the soil but also in vegetative tissues and reproductive organs of peanut. Bacterial community structure analysis under normal growth conditions reveals that IC dramatically altered the soil bacterial abundance composition in both peanut and cotton strips of the top soil whereas the bacterial diversity was barely affected compared with MP and MC. At blossom-needling stage, the metabolic functional features of the bacterial communities such as fatty acid biosynthesis, lipoic acid metabolism, peptidoglycan biosynthesis, and biosynthesis of ansamycins were significantly enriched in MP compared with other treatments. Conversely, these metabolic functional features were dramatically depleted in MP while significantly enriched in IC at podding stage. Permeable root barrier treatments (NC-P and NC-C) counteracted the benefits of IC and the side effects were more pronounced in impermeable treatments (SC-P and SC-C). Conclusion Peanut/cotton intercropping increases crop yield as well as economic returns under non-saline, secondary-saline, and coastal saline soil conditions probably by modulating the soil bacterial abundance composition and accelerating plant nutrients accumulation.
ISSN:1471-2229