Low-Complexity Decoder for Overloaded Uniquely Decodable Synchronous CDMA

We consider the problem of designing a low-complexity decoder for antipodal uniquely decodable (UD) /errorless code sets for overloaded synchronous code-division multiple access (CDMA) systems, where the number of signals <inline-formula> <tex-math notation="LaTeX">$K_{\mathrm{...

Full description

Bibliographic Details
Main Authors: Michel Kulhandjian, Hovannes Kulhandjian, Claude D'Amours, Halim Yanikomeroglu, Dimitris A. Pados, Gurgen Khachatrian
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9762979/
_version_ 1818195675542716416
author Michel Kulhandjian
Hovannes Kulhandjian
Claude D'Amours
Halim Yanikomeroglu
Dimitris A. Pados
Gurgen Khachatrian
author_facet Michel Kulhandjian
Hovannes Kulhandjian
Claude D'Amours
Halim Yanikomeroglu
Dimitris A. Pados
Gurgen Khachatrian
author_sort Michel Kulhandjian
collection DOAJ
description We consider the problem of designing a low-complexity decoder for antipodal uniquely decodable (UD) /errorless code sets for overloaded synchronous code-division multiple access (CDMA) systems, where the number of signals <inline-formula> <tex-math notation="LaTeX">$K_{\mathrm{max}}^{a}$ </tex-math></inline-formula> is the largest known for the given code length <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>. In our complexity analysis, we illustrate that compared to maximum-likelihood (ML) decoder, which has an exponential computational complexity for even moderate code lengths, the proposed decoder has a quasi-quadratic computational complexity. Simulation results in terms of bit-error-rate (BER) demonstrate that the performance of the proposed decoder has only a <inline-formula> <tex-math notation="LaTeX">$1-2$ </tex-math></inline-formula> dB degradation in signal-to-noise ratio (SNR) at a BER of 10<sup>&#x2212;3</sup> when compared to ML. Moreover, we derive the proof of the minimum Manhattan distance of such UD codes and we provide the proofs for the propositions; these proofs constitute the foundation of the formal proof for the maximum number users <inline-formula> <tex-math notation="LaTeX">$K_{\mathrm{max}}^{a}$ </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">$L=8$ </tex-math></inline-formula>.
first_indexed 2024-12-12T01:21:57Z
format Article
id doaj.art-3be6cf2916fe46c4b74e08f67c178fee
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-12-12T01:21:57Z
publishDate 2022-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-3be6cf2916fe46c4b74e08f67c178fee2022-12-22T00:43:13ZengIEEEIEEE Access2169-35362022-01-0110462554627510.1109/ACCESS.2022.31704919762979Low-Complexity Decoder for Overloaded Uniquely Decodable Synchronous CDMAMichel Kulhandjian0https://orcid.org/0000-0001-6692-7907Hovannes Kulhandjian1https://orcid.org/0000-0002-8983-6757Claude D'Amours2Halim Yanikomeroglu3https://orcid.org/0000-0003-4776-9354Dimitris A. Pados4https://orcid.org/0000-0001-8959-6450Gurgen Khachatrian5School of Electrical Engineering and Computer Science, University of Ottawa, ON K1N 6N5, Ottawa, CanadaDepartment of Electrical and Computer Engineering, California State University, Fresno, Fresno, CA, USASchool of Electrical Engineering and Computer Science, University of Ottawa, ON K1N 6N5, Ottawa, CanadaDepartment of Systems and Computer Engineering, Carleton University, Ottawa, ON, CanadaDepartment of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USACollege of Science and Engineering, American University of Armenia, Yerevan, ArmeniaWe consider the problem of designing a low-complexity decoder for antipodal uniquely decodable (UD) /errorless code sets for overloaded synchronous code-division multiple access (CDMA) systems, where the number of signals <inline-formula> <tex-math notation="LaTeX">$K_{\mathrm{max}}^{a}$ </tex-math></inline-formula> is the largest known for the given code length <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>. In our complexity analysis, we illustrate that compared to maximum-likelihood (ML) decoder, which has an exponential computational complexity for even moderate code lengths, the proposed decoder has a quasi-quadratic computational complexity. Simulation results in terms of bit-error-rate (BER) demonstrate that the performance of the proposed decoder has only a <inline-formula> <tex-math notation="LaTeX">$1-2$ </tex-math></inline-formula> dB degradation in signal-to-noise ratio (SNR) at a BER of 10<sup>&#x2212;3</sup> when compared to ML. Moreover, we derive the proof of the minimum Manhattan distance of such UD codes and we provide the proofs for the propositions; these proofs constitute the foundation of the formal proof for the maximum number users <inline-formula> <tex-math notation="LaTeX">$K_{\mathrm{max}}^{a}$ </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">$L=8$ </tex-math></inline-formula>.https://ieeexplore.ieee.org/document/9762979/Uniquely decodable (UD) codesoverloaded CDMAoverloaded binary and ternary spreading spreading codes
spellingShingle Michel Kulhandjian
Hovannes Kulhandjian
Claude D'Amours
Halim Yanikomeroglu
Dimitris A. Pados
Gurgen Khachatrian
Low-Complexity Decoder for Overloaded Uniquely Decodable Synchronous CDMA
IEEE Access
Uniquely decodable (UD) codes
overloaded CDMA
overloaded binary and ternary spreading spreading codes
title Low-Complexity Decoder for Overloaded Uniquely Decodable Synchronous CDMA
title_full Low-Complexity Decoder for Overloaded Uniquely Decodable Synchronous CDMA
title_fullStr Low-Complexity Decoder for Overloaded Uniquely Decodable Synchronous CDMA
title_full_unstemmed Low-Complexity Decoder for Overloaded Uniquely Decodable Synchronous CDMA
title_short Low-Complexity Decoder for Overloaded Uniquely Decodable Synchronous CDMA
title_sort low complexity decoder for overloaded uniquely decodable synchronous cdma
topic Uniquely decodable (UD) codes
overloaded CDMA
overloaded binary and ternary spreading spreading codes
url https://ieeexplore.ieee.org/document/9762979/
work_keys_str_mv AT michelkulhandjian lowcomplexitydecoderforoverloadeduniquelydecodablesynchronouscdma
AT hovanneskulhandjian lowcomplexitydecoderforoverloadeduniquelydecodablesynchronouscdma
AT claudedamours lowcomplexitydecoderforoverloadeduniquelydecodablesynchronouscdma
AT halimyanikomeroglu lowcomplexitydecoderforoverloadeduniquelydecodablesynchronouscdma
AT dimitrisapados lowcomplexitydecoderforoverloadeduniquelydecodablesynchronouscdma
AT gurgenkhachatrian lowcomplexitydecoderforoverloadeduniquelydecodablesynchronouscdma