Low-Complexity Decoder for Overloaded Uniquely Decodable Synchronous CDMA
We consider the problem of designing a low-complexity decoder for antipodal uniquely decodable (UD) /errorless code sets for overloaded synchronous code-division multiple access (CDMA) systems, where the number of signals <inline-formula> <tex-math notation="LaTeX">$K_{\mathrm{...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2022-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9762979/ |
_version_ | 1818195675542716416 |
---|---|
author | Michel Kulhandjian Hovannes Kulhandjian Claude D'Amours Halim Yanikomeroglu Dimitris A. Pados Gurgen Khachatrian |
author_facet | Michel Kulhandjian Hovannes Kulhandjian Claude D'Amours Halim Yanikomeroglu Dimitris A. Pados Gurgen Khachatrian |
author_sort | Michel Kulhandjian |
collection | DOAJ |
description | We consider the problem of designing a low-complexity decoder for antipodal uniquely decodable (UD) /errorless code sets for overloaded synchronous code-division multiple access (CDMA) systems, where the number of signals <inline-formula> <tex-math notation="LaTeX">$K_{\mathrm{max}}^{a}$ </tex-math></inline-formula> is the largest known for the given code length <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>. In our complexity analysis, we illustrate that compared to maximum-likelihood (ML) decoder, which has an exponential computational complexity for even moderate code lengths, the proposed decoder has a quasi-quadratic computational complexity. Simulation results in terms of bit-error-rate (BER) demonstrate that the performance of the proposed decoder has only a <inline-formula> <tex-math notation="LaTeX">$1-2$ </tex-math></inline-formula> dB degradation in signal-to-noise ratio (SNR) at a BER of 10<sup>−3</sup> when compared to ML. Moreover, we derive the proof of the minimum Manhattan distance of such UD codes and we provide the proofs for the propositions; these proofs constitute the foundation of the formal proof for the maximum number users <inline-formula> <tex-math notation="LaTeX">$K_{\mathrm{max}}^{a}$ </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">$L=8$ </tex-math></inline-formula>. |
first_indexed | 2024-12-12T01:21:57Z |
format | Article |
id | doaj.art-3be6cf2916fe46c4b74e08f67c178fee |
institution | Directory Open Access Journal |
issn | 2169-3536 |
language | English |
last_indexed | 2024-12-12T01:21:57Z |
publishDate | 2022-01-01 |
publisher | IEEE |
record_format | Article |
series | IEEE Access |
spelling | doaj.art-3be6cf2916fe46c4b74e08f67c178fee2022-12-22T00:43:13ZengIEEEIEEE Access2169-35362022-01-0110462554627510.1109/ACCESS.2022.31704919762979Low-Complexity Decoder for Overloaded Uniquely Decodable Synchronous CDMAMichel Kulhandjian0https://orcid.org/0000-0001-6692-7907Hovannes Kulhandjian1https://orcid.org/0000-0002-8983-6757Claude D'Amours2Halim Yanikomeroglu3https://orcid.org/0000-0003-4776-9354Dimitris A. Pados4https://orcid.org/0000-0001-8959-6450Gurgen Khachatrian5School of Electrical Engineering and Computer Science, University of Ottawa, ON K1N 6N5, Ottawa, CanadaDepartment of Electrical and Computer Engineering, California State University, Fresno, Fresno, CA, USASchool of Electrical Engineering and Computer Science, University of Ottawa, ON K1N 6N5, Ottawa, CanadaDepartment of Systems and Computer Engineering, Carleton University, Ottawa, ON, CanadaDepartment of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USACollege of Science and Engineering, American University of Armenia, Yerevan, ArmeniaWe consider the problem of designing a low-complexity decoder for antipodal uniquely decodable (UD) /errorless code sets for overloaded synchronous code-division multiple access (CDMA) systems, where the number of signals <inline-formula> <tex-math notation="LaTeX">$K_{\mathrm{max}}^{a}$ </tex-math></inline-formula> is the largest known for the given code length <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>. In our complexity analysis, we illustrate that compared to maximum-likelihood (ML) decoder, which has an exponential computational complexity for even moderate code lengths, the proposed decoder has a quasi-quadratic computational complexity. Simulation results in terms of bit-error-rate (BER) demonstrate that the performance of the proposed decoder has only a <inline-formula> <tex-math notation="LaTeX">$1-2$ </tex-math></inline-formula> dB degradation in signal-to-noise ratio (SNR) at a BER of 10<sup>−3</sup> when compared to ML. Moreover, we derive the proof of the minimum Manhattan distance of such UD codes and we provide the proofs for the propositions; these proofs constitute the foundation of the formal proof for the maximum number users <inline-formula> <tex-math notation="LaTeX">$K_{\mathrm{max}}^{a}$ </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">$L=8$ </tex-math></inline-formula>.https://ieeexplore.ieee.org/document/9762979/Uniquely decodable (UD) codesoverloaded CDMAoverloaded binary and ternary spreading spreading codes |
spellingShingle | Michel Kulhandjian Hovannes Kulhandjian Claude D'Amours Halim Yanikomeroglu Dimitris A. Pados Gurgen Khachatrian Low-Complexity Decoder for Overloaded Uniquely Decodable Synchronous CDMA IEEE Access Uniquely decodable (UD) codes overloaded CDMA overloaded binary and ternary spreading spreading codes |
title | Low-Complexity Decoder for Overloaded Uniquely Decodable Synchronous CDMA |
title_full | Low-Complexity Decoder for Overloaded Uniquely Decodable Synchronous CDMA |
title_fullStr | Low-Complexity Decoder for Overloaded Uniquely Decodable Synchronous CDMA |
title_full_unstemmed | Low-Complexity Decoder for Overloaded Uniquely Decodable Synchronous CDMA |
title_short | Low-Complexity Decoder for Overloaded Uniquely Decodable Synchronous CDMA |
title_sort | low complexity decoder for overloaded uniquely decodable synchronous cdma |
topic | Uniquely decodable (UD) codes overloaded CDMA overloaded binary and ternary spreading spreading codes |
url | https://ieeexplore.ieee.org/document/9762979/ |
work_keys_str_mv | AT michelkulhandjian lowcomplexitydecoderforoverloadeduniquelydecodablesynchronouscdma AT hovanneskulhandjian lowcomplexitydecoderforoverloadeduniquelydecodablesynchronouscdma AT claudedamours lowcomplexitydecoderforoverloadeduniquelydecodablesynchronouscdma AT halimyanikomeroglu lowcomplexitydecoderforoverloadeduniquelydecodablesynchronouscdma AT dimitrisapados lowcomplexitydecoderforoverloadeduniquelydecodablesynchronouscdma AT gurgenkhachatrian lowcomplexitydecoderforoverloadeduniquelydecodablesynchronouscdma |