Summary: | Cyclotriphosphazenes, a variety of inorganic rings together with a curing ingredient, 4,4′-methylene dianiline (MDA), are mainly used to enhance the thermal conductivity and mechanical characteristics of epoxy resin (DGEBA). Three DGEBA@MDA, HGCP@MDA, and thermosets were produced, and their curing behaviors were investigated. Using a molecular dynamics (MD) approach, the impact of cyclotriphosphazene on the characteristics of DGEBA composites is thoroughly explored in this paper. Results indicated that the glass transition temperatures (<i>T<sub>g</sub></i>) of DGEBA containing HGCP had slightly decreased compared to DGEBA. With the addition of HGCP to DGEBA, epoxy resin (DGEBA@HGCP@MDA) has a high thermal conductivity of 0.215284 W/m·K, with an increase of 116.04% more than pure DGEBA (0.185524 W/m·K). Moreover, the DGEBA@HGCP@MDA composite has high mechanical strength with a specific Young’s modulus of 5.4902 GPa. In order to forecast and analyze certain performances directly associated with the microstructure characteristics of the various cross-linked resin systems and their composite materials, an MD simulation approach will be quite valuable.
|