Polynomials Generating Maximal Real Subfields of Circular Fields

We have constructed recurrence formulas for polynomials qn(x) ɕ Q[x], any root of which generates the maximal real subfield of circular field K2n. It has been shown that all real subfields of fixed field K2n can be described by using polynomial qn(x) and its Galois group. Furthermore, a methodology...

Full description

Bibliographic Details
Main Authors: I.G. Galyautdinov, E.E. Lavrentyeva
Format: Article
Language:English
Published: Kazan Federal University 2016-12-01
Series:Учёные записки Казанского университета. Серия Физико-математические науки
Subjects:
Online Access:http://kpfu.ru/portal/docs/F1697277406/158_4_phys_mat_2.pdf
_version_ 1797964968001273856
author I.G. Galyautdinov
E.E. Lavrentyeva
author_facet I.G. Galyautdinov
E.E. Lavrentyeva
author_sort I.G. Galyautdinov
collection DOAJ
description We have constructed recurrence formulas for polynomials qn(x) ɕ Q[x], any root of which generates the maximal real subfield of circular field K2n. It has been shown that all real subfields of fixed field K2n can be described by using polynomial qn(x) and its Galois group. Furthermore, a methodology has been developed for presentation of square radical d1/2, d ɕ N, d > 1 in the form of a polynomial with rational coefficients relative to 2cos(π/n) at the corresponding n. The theoretical results have been verified by a number of examples.
first_indexed 2024-04-11T01:52:53Z
format Article
id doaj.art-3c041c0bc6a34281919bc750ac15d2ba
institution Directory Open Access Journal
issn 2541-7746
2500-2198
language English
last_indexed 2024-04-11T01:52:53Z
publishDate 2016-12-01
publisher Kazan Federal University
record_format Article
series Учёные записки Казанского университета. Серия Физико-математические науки
spelling doaj.art-3c041c0bc6a34281919bc750ac15d2ba2023-01-03T06:01:45ZengKazan Federal UniversityУчёные записки Казанского университета. Серия Физико-математические науки2541-77462500-21982016-12-011584469481Polynomials Generating Maximal Real Subfields of Circular FieldsI.G. Galyautdinov0E.E. Lavrentyeva1Volga State University of Telecommunications and Informatics, Kazan Branch, Kazan, 420061 Russia Kazan Federal University, Kazan, 420008 RussiaWe have constructed recurrence formulas for polynomials qn(x) ɕ Q[x], any root of which generates the maximal real subfield of circular field K2n. It has been shown that all real subfields of fixed field K2n can be described by using polynomial qn(x) and its Galois group. Furthermore, a methodology has been developed for presentation of square radical d1/2, d ɕ N, d > 1 in the form of a polynomial with rational coefficients relative to 2cos(π/n) at the corresponding n. The theoretical results have been verified by a number of examples.http://kpfu.ru/portal/docs/F1697277406/158_4_phys_mat_2.pdfalgebraic numberminimal polynomialcircular fields and their subfieldsGalois group
spellingShingle I.G. Galyautdinov
E.E. Lavrentyeva
Polynomials Generating Maximal Real Subfields of Circular Fields
Учёные записки Казанского университета. Серия Физико-математические науки
algebraic number
minimal polynomial
circular fields and their subfields
Galois group
title Polynomials Generating Maximal Real Subfields of Circular Fields
title_full Polynomials Generating Maximal Real Subfields of Circular Fields
title_fullStr Polynomials Generating Maximal Real Subfields of Circular Fields
title_full_unstemmed Polynomials Generating Maximal Real Subfields of Circular Fields
title_short Polynomials Generating Maximal Real Subfields of Circular Fields
title_sort polynomials generating maximal real subfields of circular fields
topic algebraic number
minimal polynomial
circular fields and their subfields
Galois group
url http://kpfu.ru/portal/docs/F1697277406/158_4_phys_mat_2.pdf
work_keys_str_mv AT iggalyautdinov polynomialsgeneratingmaximalrealsubfieldsofcircularfields
AT eelavrentyeva polynomialsgeneratingmaximalrealsubfieldsofcircularfields