A Hybrid Fuzzy GJR-GARCH Modeling Approach for Stock Market Volatility Forecasting
Forecasting stock market returns volatility is a challenging task that has attracted the attention of market practitioners, regulators and academics in recent years. This paper proposes a Fuzzy GJR-GARCH model to forecast the volatility of S&P 500 and Ibovespa indexes. The model comprises both t...
Autor Principal: | Leandro Maciel |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado: |
Brazilian Society of Finance
2012-09-01
|
Series: | Revista Brasileira de Finanças |
Subjects: | |
Acceso en liña: | http://bibliotecadigital.fgv.br/ojs/index.php/rbfin/article/view/3871 |
Títulos similares
-
Performance of GARCH models in forecasting stock market volatility.
por: Choo, Wei Chong, et al.
Publicado: (1999) -
ESTIMATING VOLATILITY CLUSTERING USING GJR-GARCH MODEL: A CASE STUDY FOR GERMAN STOCK MARKET
por: RACHANA BAID, et al.
Publicado: (2022-12-01) -
Forecasting Malaysian Gold Using a Hybrid of ARIMA and GJR-GARCH Models
por: Siti Roslindar, Yaziz, et al.
Publicado: (2015) -
Forecasting Stock Market Volatility Using Wavelet Transformation Algorithm Of Garch Model
por: Audu, Buba
Publicado: (2017) -
Determinants of Transactions Costs in the Brazilian Stock Market
por: Antonio Zoratto Sanvicente
Publicado: (2012-06-01)