A Method for the Dynamics of Vortices in a Bose-Einstein Condensate: Analytical Equations of the Trajectories of Phase Singularities

We present a method to study the dynamics of a quasi-two dimensional Bose-Einstein condensate which initially contains several vortices at arbitrary locations. The method allows one to find the analytical solution for the dynamics of the Bose-Einstein condensate in a homogeneous medium and in a para...

Full description

Bibliographic Details
Main Authors: Sergi De María-García, Albert Ferrando, J. Alberto Conejero, Pedro Fernández De Córdoba, Miguel Ángel García-March
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Condensed Matter
Subjects:
Online Access:https://www.mdpi.com/2410-3896/8/1/12
_version_ 1797612536336482304
author Sergi De María-García
Albert Ferrando
J. Alberto Conejero
Pedro Fernández De Córdoba
Miguel Ángel García-March
author_facet Sergi De María-García
Albert Ferrando
J. Alberto Conejero
Pedro Fernández De Córdoba
Miguel Ángel García-March
author_sort Sergi De María-García
collection DOAJ
description We present a method to study the dynamics of a quasi-two dimensional Bose-Einstein condensate which initially contains several vortices at arbitrary locations. The method allows one to find the analytical solution for the dynamics of the Bose-Einstein condensate in a homogeneous medium and in a parabolic trap, for the ideal non-interacting case. Secondly, the method allows one to obtain algebraic equations for the trajectories of the position of phase singularities present in the initial condensate along with time (the vortex lines). With these equations, one can predict quantities of interest, such as the time at which a vortex and an antivortex contained in the initial condensate will merge. For the homogeneous case, this method was introduced in the context of photonics. Here, we adapt it to the context of Bose-Einstein condensates, and we extend it to the trapped case for the first time. Also, we offer numerical simulations in the non-linear case, for repulsive and attractive interactions. We use a numerical split-step simulation of the non-linear Gross-Pitaevskii equation to determine how these trajectories and quantities of interest are changed by the interactions. We illustrate the method with several simple cases of interest, both in the homogeneous and parabolically trapped systems.
first_indexed 2024-03-11T06:42:35Z
format Article
id doaj.art-3c2831b03b684989baaf72213187ab52
institution Directory Open Access Journal
issn 2410-3896
language English
last_indexed 2024-03-11T06:42:35Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Condensed Matter
spelling doaj.art-3c2831b03b684989baaf72213187ab522023-11-17T10:26:48ZengMDPI AGCondensed Matter2410-38962023-01-01811210.3390/condmat8010012A Method for the Dynamics of Vortices in a Bose-Einstein Condensate: Analytical Equations of the Trajectories of Phase SingularitiesSergi De María-García0Albert Ferrando1J. Alberto Conejero2Pedro Fernández De Córdoba3Miguel Ángel García-March4Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 València, SpainDepartment d’Optica, Universitat de València, Dr. Moliner, 50, E-46100 Burjassot (València), SpainInstituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 València, SpainInstituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 València, SpainInstituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 València, SpainWe present a method to study the dynamics of a quasi-two dimensional Bose-Einstein condensate which initially contains several vortices at arbitrary locations. The method allows one to find the analytical solution for the dynamics of the Bose-Einstein condensate in a homogeneous medium and in a parabolic trap, for the ideal non-interacting case. Secondly, the method allows one to obtain algebraic equations for the trajectories of the position of phase singularities present in the initial condensate along with time (the vortex lines). With these equations, one can predict quantities of interest, such as the time at which a vortex and an antivortex contained in the initial condensate will merge. For the homogeneous case, this method was introduced in the context of photonics. Here, we adapt it to the context of Bose-Einstein condensates, and we extend it to the trapped case for the first time. Also, we offer numerical simulations in the non-linear case, for repulsive and attractive interactions. We use a numerical split-step simulation of the non-linear Gross-Pitaevskii equation to determine how these trajectories and quantities of interest are changed by the interactions. We illustrate the method with several simple cases of interest, both in the homogeneous and parabolically trapped systems.https://www.mdpi.com/2410-3896/8/1/12Bose-Einstein condensatesvorticesphase singularitiesnumerical method
spellingShingle Sergi De María-García
Albert Ferrando
J. Alberto Conejero
Pedro Fernández De Córdoba
Miguel Ángel García-March
A Method for the Dynamics of Vortices in a Bose-Einstein Condensate: Analytical Equations of the Trajectories of Phase Singularities
Condensed Matter
Bose-Einstein condensates
vortices
phase singularities
numerical method
title A Method for the Dynamics of Vortices in a Bose-Einstein Condensate: Analytical Equations of the Trajectories of Phase Singularities
title_full A Method for the Dynamics of Vortices in a Bose-Einstein Condensate: Analytical Equations of the Trajectories of Phase Singularities
title_fullStr A Method for the Dynamics of Vortices in a Bose-Einstein Condensate: Analytical Equations of the Trajectories of Phase Singularities
title_full_unstemmed A Method for the Dynamics of Vortices in a Bose-Einstein Condensate: Analytical Equations of the Trajectories of Phase Singularities
title_short A Method for the Dynamics of Vortices in a Bose-Einstein Condensate: Analytical Equations of the Trajectories of Phase Singularities
title_sort method for the dynamics of vortices in a bose einstein condensate analytical equations of the trajectories of phase singularities
topic Bose-Einstein condensates
vortices
phase singularities
numerical method
url https://www.mdpi.com/2410-3896/8/1/12
work_keys_str_mv AT sergidemariagarcia amethodforthedynamicsofvorticesinaboseeinsteincondensateanalyticalequationsofthetrajectoriesofphasesingularities
AT albertferrando amethodforthedynamicsofvorticesinaboseeinsteincondensateanalyticalequationsofthetrajectoriesofphasesingularities
AT jalbertoconejero amethodforthedynamicsofvorticesinaboseeinsteincondensateanalyticalequationsofthetrajectoriesofphasesingularities
AT pedrofernandezdecordoba amethodforthedynamicsofvorticesinaboseeinsteincondensateanalyticalequationsofthetrajectoriesofphasesingularities
AT miguelangelgarciamarch amethodforthedynamicsofvorticesinaboseeinsteincondensateanalyticalequationsofthetrajectoriesofphasesingularities
AT sergidemariagarcia methodforthedynamicsofvorticesinaboseeinsteincondensateanalyticalequationsofthetrajectoriesofphasesingularities
AT albertferrando methodforthedynamicsofvorticesinaboseeinsteincondensateanalyticalequationsofthetrajectoriesofphasesingularities
AT jalbertoconejero methodforthedynamicsofvorticesinaboseeinsteincondensateanalyticalequationsofthetrajectoriesofphasesingularities
AT pedrofernandezdecordoba methodforthedynamicsofvorticesinaboseeinsteincondensateanalyticalequationsofthetrajectoriesofphasesingularities
AT miguelangelgarciamarch methodforthedynamicsofvorticesinaboseeinsteincondensateanalyticalequationsofthetrajectoriesofphasesingularities