Study of Regenerative Braking System and Brake Force using Pulse Width Module
This paper aims to develop regenerative braking using pulse width module (PWM) control. It concerns frequency of regenerative braking period which is used to control regenerative braking. It is usually restricted by the electric power generation of AC synchronous axial motor. It is measured by motor...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2020-01-01
|
Series: | MATEC Web of Conferences |
Online Access: | https://www.matec-conferences.org/articles/matecconf/pdf/2020/02/matecconf_icmme2020_01004.pdf |
Summary: | This paper aims to develop regenerative braking using pulse width module (PWM) control. It concerns frequency of regenerative braking period which is used to control regenerative braking. It is usually restricted by the electric power generation of AC synchronous axial motor. It is measured by motor bench tester. It indicates electronic brake torque and regenerative current. The resistance torque and regenerative current characteristics are expressed as second order polynomial equation. The results present the comparison between pulse signal and full period signal. The maximum deceleration is 10 Hz signal at 2.14 m/s2, which is not exceed deceleration of brake comfort. The harvest energy at 10 Hz PWM control is 1.40 Wh. It is closely to use full period regenerative brake, but 10 Hz PWM control has comfortable than other frequencies and efficiency is 54.3 percent. |
---|---|
ISSN: | 2261-236X |