Phase tracking for sub-shot-noise-limited receivers
Nonconventional receivers for phase-coherent states based on non-Gaussian measurements such as photon counting surpass the sensitivity limits of shot-noise-limited coherent receivers, the quantum noise limit (QNL). These non-Gaussian receivers can have a significant impact in future coherent communi...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2020-06-01
|
Series: | Physical Review Research |
Online Access: | http://doi.org/10.1103/PhysRevResearch.2.023384 |
_version_ | 1797211389102653440 |
---|---|
author | M. T. DiMario F. E. Becerra |
author_facet | M. T. DiMario F. E. Becerra |
author_sort | M. T. DiMario |
collection | DOAJ |
description | Nonconventional receivers for phase-coherent states based on non-Gaussian measurements such as photon counting surpass the sensitivity limits of shot-noise-limited coherent receivers, the quantum noise limit (QNL). These non-Gaussian receivers can have a significant impact in future coherent communication technologies. However, random phase changes in realistic communication channels, such as optical fibers, present serious challenges for extracting the information encoded in coherent states. While there are methods for correcting random phase noise with conventional heterodyne detection, phase tracking for non-Gaussian receivers surpassing the QNL is still an open problem. Here we demonstrate phase tracking for non-Gaussian receivers to correct for time-varying phase noise while allowing for decoding beyond the QNL. The phase-tracking method performs real-time parameter estimation and correction of phase drifts using the data from the non-Gaussian discrimination measurement, without relying on phase reference pilot fields. This method enables non-Gaussian receivers to achieve higher sensitivities and rates of information transfer than ideal coherent receivers in realistic channels with time-varying phase noise. This demonstration makes sub-QNL receivers a more robust, feasible, and practical quantum technology for classical and quantum communications. |
first_indexed | 2024-04-24T10:25:42Z |
format | Article |
id | doaj.art-3c395d3b73f44ffb935b09aa9ce129c4 |
institution | Directory Open Access Journal |
issn | 2643-1564 |
language | English |
last_indexed | 2024-04-24T10:25:42Z |
publishDate | 2020-06-01 |
publisher | American Physical Society |
record_format | Article |
series | Physical Review Research |
spelling | doaj.art-3c395d3b73f44ffb935b09aa9ce129c42024-04-12T16:56:02ZengAmerican Physical SocietyPhysical Review Research2643-15642020-06-012202338410.1103/PhysRevResearch.2.023384Phase tracking for sub-shot-noise-limited receiversM. T. DiMarioF. E. BecerraNonconventional receivers for phase-coherent states based on non-Gaussian measurements such as photon counting surpass the sensitivity limits of shot-noise-limited coherent receivers, the quantum noise limit (QNL). These non-Gaussian receivers can have a significant impact in future coherent communication technologies. However, random phase changes in realistic communication channels, such as optical fibers, present serious challenges for extracting the information encoded in coherent states. While there are methods for correcting random phase noise with conventional heterodyne detection, phase tracking for non-Gaussian receivers surpassing the QNL is still an open problem. Here we demonstrate phase tracking for non-Gaussian receivers to correct for time-varying phase noise while allowing for decoding beyond the QNL. The phase-tracking method performs real-time parameter estimation and correction of phase drifts using the data from the non-Gaussian discrimination measurement, without relying on phase reference pilot fields. This method enables non-Gaussian receivers to achieve higher sensitivities and rates of information transfer than ideal coherent receivers in realistic channels with time-varying phase noise. This demonstration makes sub-QNL receivers a more robust, feasible, and practical quantum technology for classical and quantum communications.http://doi.org/10.1103/PhysRevResearch.2.023384 |
spellingShingle | M. T. DiMario F. E. Becerra Phase tracking for sub-shot-noise-limited receivers Physical Review Research |
title | Phase tracking for sub-shot-noise-limited receivers |
title_full | Phase tracking for sub-shot-noise-limited receivers |
title_fullStr | Phase tracking for sub-shot-noise-limited receivers |
title_full_unstemmed | Phase tracking for sub-shot-noise-limited receivers |
title_short | Phase tracking for sub-shot-noise-limited receivers |
title_sort | phase tracking for sub shot noise limited receivers |
url | http://doi.org/10.1103/PhysRevResearch.2.023384 |
work_keys_str_mv | AT mtdimario phasetrackingforsubshotnoiselimitedreceivers AT febecerra phasetrackingforsubshotnoiselimitedreceivers |