Increase in COVID-19 inpatient survival following detection of Thromboembolic and Cytokine storm risk from the point of admission to hospital by a near real time Traffic-light System (TraCe-Tic)

Introduction: Our goal was to evaluate if traffic-light driven personalized care for COVID-19 was associated with improved survival in acute hospital settings. Methods: Discharge outcomes were evaluated before and after prospective implementation of a real-time dashboard with feedback to ward-based...

Full description

Bibliographic Details
Main Authors: Marcela P. Vizcaychipi, Claire L. Shovlin, Alex McCarthy, Andrew Godfrey, Sheena Patel, Pallav L. Shah, Michelle Hayes, Richard T. Keays, Iain Beveridge, Gary Davies
Format: Article
Language:English
Published: Elsevier 2020-09-01
Series:Brazilian Journal of Infectious Diseases
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1413867020301094
Description
Summary:Introduction: Our goal was to evaluate if traffic-light driven personalized care for COVID-19 was associated with improved survival in acute hospital settings. Methods: Discharge outcomes were evaluated before and after prospective implementation of a real-time dashboard with feedback to ward-based clinicians. Thromboembolism categories were “medium-risk” (D-dimer >1000 ng/mL or CRP >200 mg/L); “high-risk” (D-dimer >3000 ng/mL or CRP >250 mg/L) or “suspected” (D-dimer >5000 ng/mL). Cytokine storm risk was categorized by ferritin. Results: 939/1039 COVID-19 positive patients (median age 67 years, 563/939 (60%) male) completed hospital encounters to death or discharge by 21st May 2020. Thromboembolism flag criteria were reached by 568/939 (60.5%), including 238/275 (86.6%) of the patients who died, and 330/664 (49.7%) of the patients who survived to discharge, p < 0.0001. Cytokine storm flag criteria were reached by 212 (22.6%) of admissions, including 80/275 (29.1%) of the patients who died, and 132/664 (19.9%) of the patients who survived, p < 0.0001. The maximum thromboembolism flag discriminated completed encounter mortality (no flag: 37/371 [9.97%] died; medium-risk: 68/239 [28.5%]; high-risk: 105/205 [51.2%]; and suspected thromboembolism: 65/124 [52.4%], p < 0.0001). Flag criteria were reached by 535 consecutive COVID-19 positive patients whose hospital encounter completed before traffic-light introduction: 173/535 (32.3% [95% confidence intervals 28.0, 36.0]) died. For the 200 consecutive admissions after implementation of real-time traffic light flags, 46/200 (23.0% [95% confidence intervals 17.1, 28.9]) died, p = 0.013. Adjusted for age and sex, the probability of death was 0.33 (95% confidence intervals 0.30, 0.37) before traffic light implementation, 0.22 (0.17, 0.27) after implementation, p < 0.001. In subgroup analyses, older patients, males, and patients with hypertension (p ≤ 0.01), and/or diabetes (p = 0.05) derived the greatest benefit from admission under the traffic light system. Conclusion: Personalized early interventions were associated with a 33% reduction in early mortality. We suggest benefit predominantly resulted from early triggers to review/enhance anticoagulation management, without exposing lower-risk patients to potential risks of full anticoagulation therapy.
ISSN:1413-8670