Crop epigenetics and the molecular hardware of genotype x environment interactions

Crop plants encounter thermal environments which fluctuate on a diurnal and seasonal basis. Future climate resilient cultivars will need to respond to thermal profiles reflecting more variable conditions, and harness plasticity that involves regulation of epigenetic processes and complex genomic reg...

Full description

Bibliographic Details
Main Author: Graham John King
Format: Article
Language:English
Published: Frontiers Media S.A. 2015-11-01
Series:Frontiers in Plant Science
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fpls.2015.00968/full
_version_ 1811241254940311552
author Graham John King
Graham John King
Graham John King
author_facet Graham John King
Graham John King
Graham John King
author_sort Graham John King
collection DOAJ
description Crop plants encounter thermal environments which fluctuate on a diurnal and seasonal basis. Future climate resilient cultivars will need to respond to thermal profiles reflecting more variable conditions, and harness plasticity that involves regulation of epigenetic processes and complex genomic regulatory networks. Compartmentalisation within plant cells insulates the genomic central processing unit within the interphase nucleus. This review addresses the properties of the chromatin hardware in which the genome is embedded, focusing on the biophysical and thermodynamic properties of DNA, histones and nucleosomes. It explores the consequences of thermal and ionic variation on the biophysical behaviour of epigenetic marks such as DNA cytosine methylation (5mC), and histone variants such as H2A.Z, and how these contribute to maintenance of chromatin integrity in the nucleus, while enabling specific subsets of genes to be regulated. Information is drawn from theoretical molecular in vitro studies as well as model and crop plants and incorporates recent insights into the role epigenetic processes play in mediating between environmental signals and genomic regulation. A preliminary speculative framework is outlined, based on the evidence of what appears a cohesive set of interactions at molecular, biophysical and electrostatic level between the various components contributing to chromatin conformation and dynamics. It proposes that within plant nuclei, general and localised ionic homeostasis plays an important role in maintaining chromatin conformation, whilst maintaining complex genomic regulation that involve specific patterns of epigenetic marks. More generally, reversible changes in DNA methylation appear to be consistent with the ability of nuclear chromatin to manage variation in external ionic and temperature environment. Whilst tentative, this framework provides scope to develop experimental approaches to understand in greater detail the internal environment of plant nuclei. It is hoped that this will generate a deeper understanding of the molecular mechanisms underlying genotype x environment interactions that may be beneficial for long-term improvement of crop performance in less predictable climates.
first_indexed 2024-04-12T13:32:49Z
format Article
id doaj.art-3c56b96cdc6645e39314b90a6f674917
institution Directory Open Access Journal
issn 1664-462X
language English
last_indexed 2024-04-12T13:32:49Z
publishDate 2015-11-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Plant Science
spelling doaj.art-3c56b96cdc6645e39314b90a6f6749172022-12-22T03:31:07ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2015-11-01610.3389/fpls.2015.00968152553Crop epigenetics and the molecular hardware of genotype x environment interactionsGraham John King0Graham John King1Graham John King2Southern Cross UniversityHuazhong Agricultural UniversityCrops For the FutureCrop plants encounter thermal environments which fluctuate on a diurnal and seasonal basis. Future climate resilient cultivars will need to respond to thermal profiles reflecting more variable conditions, and harness plasticity that involves regulation of epigenetic processes and complex genomic regulatory networks. Compartmentalisation within plant cells insulates the genomic central processing unit within the interphase nucleus. This review addresses the properties of the chromatin hardware in which the genome is embedded, focusing on the biophysical and thermodynamic properties of DNA, histones and nucleosomes. It explores the consequences of thermal and ionic variation on the biophysical behaviour of epigenetic marks such as DNA cytosine methylation (5mC), and histone variants such as H2A.Z, and how these contribute to maintenance of chromatin integrity in the nucleus, while enabling specific subsets of genes to be regulated. Information is drawn from theoretical molecular in vitro studies as well as model and crop plants and incorporates recent insights into the role epigenetic processes play in mediating between environmental signals and genomic regulation. A preliminary speculative framework is outlined, based on the evidence of what appears a cohesive set of interactions at molecular, biophysical and electrostatic level between the various components contributing to chromatin conformation and dynamics. It proposes that within plant nuclei, general and localised ionic homeostasis plays an important role in maintaining chromatin conformation, whilst maintaining complex genomic regulation that involve specific patterns of epigenetic marks. More generally, reversible changes in DNA methylation appear to be consistent with the ability of nuclear chromatin to manage variation in external ionic and temperature environment. Whilst tentative, this framework provides scope to develop experimental approaches to understand in greater detail the internal environment of plant nuclei. It is hoped that this will generate a deeper understanding of the molecular mechanisms underlying genotype x environment interactions that may be beneficial for long-term improvement of crop performance in less predictable climates.http://journal.frontiersin.org/Journal/10.3389/fpls.2015.00968/fullDNA Methylationchromatin dynamicsphenotypic plasticityIonic homeostasisGxE interactionsCrop epigenetics
spellingShingle Graham John King
Graham John King
Graham John King
Crop epigenetics and the molecular hardware of genotype x environment interactions
Frontiers in Plant Science
DNA Methylation
chromatin dynamics
phenotypic plasticity
Ionic homeostasis
GxE interactions
Crop epigenetics
title Crop epigenetics and the molecular hardware of genotype x environment interactions
title_full Crop epigenetics and the molecular hardware of genotype x environment interactions
title_fullStr Crop epigenetics and the molecular hardware of genotype x environment interactions
title_full_unstemmed Crop epigenetics and the molecular hardware of genotype x environment interactions
title_short Crop epigenetics and the molecular hardware of genotype x environment interactions
title_sort crop epigenetics and the molecular hardware of genotype x environment interactions
topic DNA Methylation
chromatin dynamics
phenotypic plasticity
Ionic homeostasis
GxE interactions
Crop epigenetics
url http://journal.frontiersin.org/Journal/10.3389/fpls.2015.00968/full
work_keys_str_mv AT grahamjohnking cropepigeneticsandthemolecularhardwareofgenotypexenvironmentinteractions
AT grahamjohnking cropepigeneticsandthemolecularhardwareofgenotypexenvironmentinteractions
AT grahamjohnking cropepigeneticsandthemolecularhardwareofgenotypexenvironmentinteractions