A Tunable Foreground Self-Calibration Scheme for Split Successive-Approximation Register Analog-to-Digital Converter

The capacitor mismatch among diverse defects caused by variations in the manufacturing process significantly affects the linearity of the capacitor array used to implement the capacitive digital-to-analog converter (CDAC) in the successive-approximation register (SAR) analog-to-digital converter (AD...

Full description

Bibliographic Details
Main Authors: Joonsung Park, Jiwon Lee, Jacob A. Abraham, Byoungho Kim
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/13/4/755
_version_ 1797298403004121088
author Joonsung Park
Jiwon Lee
Jacob A. Abraham
Byoungho Kim
author_facet Joonsung Park
Jiwon Lee
Jacob A. Abraham
Byoungho Kim
author_sort Joonsung Park
collection DOAJ
description The capacitor mismatch among diverse defects caused by variations in the manufacturing process significantly affects the linearity of the capacitor array used to implement the capacitive digital-to-analog converter (CDAC) in the successive-approximation register (SAR) analog-to-digital converter (ADC). Accordingly, the linearity of the SAR ADC is limited by that of capacitor array, resulting in serious yield loss. This paper proposes an efficient foreground self-calibration technique to enhance the linearity of the SAR ADCs by mitigating the capacitor mismatch based on the split ADC architecture along with variable capacitors. In this work, two ADC channels (i.e., ADC1 and ADC2) for the split ADC architecture include their capacitive DACs (CDACs) whose binary-weighted capacitor arrays consist of variable capacitors. A charge-sharing SAR ADC is used for each ADC channel. In the normal operation mode, their digital outputs are averaged to be the final ADC output, as in a conventional split ADC. In the calibration mode, every single binary-weighted capacitor for the two ADCs is sequentially calibrated by making parallel or/and antiparallel connection among two or thee capacitors from the two channels. For instance, because the capacitors of the CDACs ideally exhibit the binary-weighted relation as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>n</mi></msub><mo>=</mo><mn>2</mn><mo>×</mo><msub><mi>C</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula>, the variable capacitor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>n</mi></msub></semantics></math></inline-formula> of ADC1 can be updated to be closest to the sum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> of ADC1 and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> of ADC2 for the calibration. For the process, the two capacitor arrays of the two ADCs can be reconfigured to be connected to each other, so that the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>n</mi></msub></semantics></math></inline-formula> of ADC1 can be connected with two of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> of ADC1 and ADC2 in antiparallel. The two voltages at the top and the bottom plates of the CDAC are compared by a comparator of ADC1, and the comparison results are used to update <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>n</mi></msub></semantics></math></inline-formula>. This process is iterated, until <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>n</mi></msub></semantics></math></inline-formula> is in agreement with the sum of two of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula>. Finally, all the capacitors can be calibrated in this way to have the binary-weighted relation. The simulation results based on the proposed work with a split SAR ADC model verified that the proposed technique can be practically used, by showing that the total harmonic distortion and the signal-to-noise-and-distortion ratio were enhanced by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>21.8</mn></mrow></semantics></math></inline-formula> dB and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.4</mn></mrow></semantics></math></inline-formula> dB, respectively.
first_indexed 2024-03-07T22:34:22Z
format Article
id doaj.art-3c657e9561204f1fbb0c959462a0ef3c
institution Directory Open Access Journal
issn 2079-9292
language English
last_indexed 2024-03-07T22:34:22Z
publishDate 2024-02-01
publisher MDPI AG
record_format Article
series Electronics
spelling doaj.art-3c657e9561204f1fbb0c959462a0ef3c2024-02-23T15:14:50ZengMDPI AGElectronics2079-92922024-02-0113475510.3390/electronics13040755A Tunable Foreground Self-Calibration Scheme for Split Successive-Approximation Register Analog-to-Digital ConverterJoonsung Park0Jiwon Lee1Jacob A. Abraham2Byoungho Kim3Division of Electrical Engineering, Hanyang University, Ansan 15588, Republic of KoreaDivision of Electrical Engineering, Hanyang University, Ansan 15588, Republic of KoreaDepartment of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USADivision of Electrical Engineering, Hanyang University, Ansan 15588, Republic of KoreaThe capacitor mismatch among diverse defects caused by variations in the manufacturing process significantly affects the linearity of the capacitor array used to implement the capacitive digital-to-analog converter (CDAC) in the successive-approximation register (SAR) analog-to-digital converter (ADC). Accordingly, the linearity of the SAR ADC is limited by that of capacitor array, resulting in serious yield loss. This paper proposes an efficient foreground self-calibration technique to enhance the linearity of the SAR ADCs by mitigating the capacitor mismatch based on the split ADC architecture along with variable capacitors. In this work, two ADC channels (i.e., ADC1 and ADC2) for the split ADC architecture include their capacitive DACs (CDACs) whose binary-weighted capacitor arrays consist of variable capacitors. A charge-sharing SAR ADC is used for each ADC channel. In the normal operation mode, their digital outputs are averaged to be the final ADC output, as in a conventional split ADC. In the calibration mode, every single binary-weighted capacitor for the two ADCs is sequentially calibrated by making parallel or/and antiparallel connection among two or thee capacitors from the two channels. For instance, because the capacitors of the CDACs ideally exhibit the binary-weighted relation as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>n</mi></msub><mo>=</mo><mn>2</mn><mo>×</mo><msub><mi>C</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula>, the variable capacitor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>n</mi></msub></semantics></math></inline-formula> of ADC1 can be updated to be closest to the sum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> of ADC1 and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> of ADC2 for the calibration. For the process, the two capacitor arrays of the two ADCs can be reconfigured to be connected to each other, so that the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>n</mi></msub></semantics></math></inline-formula> of ADC1 can be connected with two of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> of ADC1 and ADC2 in antiparallel. The two voltages at the top and the bottom plates of the CDAC are compared by a comparator of ADC1, and the comparison results are used to update <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>n</mi></msub></semantics></math></inline-formula>. This process is iterated, until <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>n</mi></msub></semantics></math></inline-formula> is in agreement with the sum of two of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula>. Finally, all the capacitors can be calibrated in this way to have the binary-weighted relation. The simulation results based on the proposed work with a split SAR ADC model verified that the proposed technique can be practically used, by showing that the total harmonic distortion and the signal-to-noise-and-distortion ratio were enhanced by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>21.8</mn></mrow></semantics></math></inline-formula> dB and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.4</mn></mrow></semantics></math></inline-formula> dB, respectively.https://www.mdpi.com/2079-9292/13/4/755self-testingalternative testingmixed-signal testingmanufacturing testproduction testbuilt-in self-test (BIST)
spellingShingle Joonsung Park
Jiwon Lee
Jacob A. Abraham
Byoungho Kim
A Tunable Foreground Self-Calibration Scheme for Split Successive-Approximation Register Analog-to-Digital Converter
Electronics
self-testing
alternative testing
mixed-signal testing
manufacturing test
production test
built-in self-test (BIST)
title A Tunable Foreground Self-Calibration Scheme for Split Successive-Approximation Register Analog-to-Digital Converter
title_full A Tunable Foreground Self-Calibration Scheme for Split Successive-Approximation Register Analog-to-Digital Converter
title_fullStr A Tunable Foreground Self-Calibration Scheme for Split Successive-Approximation Register Analog-to-Digital Converter
title_full_unstemmed A Tunable Foreground Self-Calibration Scheme for Split Successive-Approximation Register Analog-to-Digital Converter
title_short A Tunable Foreground Self-Calibration Scheme for Split Successive-Approximation Register Analog-to-Digital Converter
title_sort tunable foreground self calibration scheme for split successive approximation register analog to digital converter
topic self-testing
alternative testing
mixed-signal testing
manufacturing test
production test
built-in self-test (BIST)
url https://www.mdpi.com/2079-9292/13/4/755
work_keys_str_mv AT joonsungpark atunableforegroundselfcalibrationschemeforsplitsuccessiveapproximationregisteranalogtodigitalconverter
AT jiwonlee atunableforegroundselfcalibrationschemeforsplitsuccessiveapproximationregisteranalogtodigitalconverter
AT jacobaabraham atunableforegroundselfcalibrationschemeforsplitsuccessiveapproximationregisteranalogtodigitalconverter
AT byounghokim atunableforegroundselfcalibrationschemeforsplitsuccessiveapproximationregisteranalogtodigitalconverter
AT joonsungpark tunableforegroundselfcalibrationschemeforsplitsuccessiveapproximationregisteranalogtodigitalconverter
AT jiwonlee tunableforegroundselfcalibrationschemeforsplitsuccessiveapproximationregisteranalogtodigitalconverter
AT jacobaabraham tunableforegroundselfcalibrationschemeforsplitsuccessiveapproximationregisteranalogtodigitalconverter
AT byounghokim tunableforegroundselfcalibrationschemeforsplitsuccessiveapproximationregisteranalogtodigitalconverter