Mechanical Properties of Green Synthesized Graphene Nano-Composite Samples
Graphene quantum dots are zero-dimensional nanoparticles that are used widely in advanced composite materials such as filtration membranes, adsorbent materials, optical devices, biomedical applications (especially biosensors), flame retardancy, and automotive, aerospace, agricultural and environment...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/11/11/4846 |
_version_ | 1797532715108532224 |
---|---|
author | Mehdi Safari Ricardo Alves de Sousa Mazaher Salamat-Talab Jalal Joudaki Davood Ghanbari Amir Bakhtiari |
author_facet | Mehdi Safari Ricardo Alves de Sousa Mazaher Salamat-Talab Jalal Joudaki Davood Ghanbari Amir Bakhtiari |
author_sort | Mehdi Safari |
collection | DOAJ |
description | Graphene quantum dots are zero-dimensional nanoparticles that are used widely in advanced composite materials such as filtration membranes, adsorbent materials, optical devices, biomedical applications (especially biosensors), flame retardancy, and automotive, aerospace, agricultural and environmental applications. In this article, the mechanical properties (flexural strength, flexural strain and elastic modulus) of polymer-based nanocomposites will be investigated. The main novelty of the current work is the green synthesis of graphene quantum dots which were extracted from lemon juice. XRD and FTIR tests have been conducted to determine the composition of the prepared powder. The polyester resin and graphene quantum dots were mixed with different weight percentages (0.25%, 0.5% and 1% wt. graphene) and processed to fabricate nanocomposite samples. The mechanical properties of the prepared samples were measured according to the ASTM D790-17 standard testing method. The experimental results show that the strength increased from 80 MPa to about 112 MPa (40% increase in strength) by adding 0.25% wt. graphene quantum dots. The flexural modulus decreased from 2.70 GPa to 2.06 GPa by adding 1% wt. graphene content (23% decrease). The flexural strain increased considerably (up to 14.2%) by adding 1% wt. graphene quantum dots. Consequently, the ductility of the nanocomposites increased by adding green synthesized graphene quantum dots. The fracture behavior changed from brittle fracture mode to ductile fracture mode by adding the graphene quantum dots. Additionally, a flame retardancy test has been carried out by implementing the UL-94 test. The fabricated nanocomposites showed fire retardancy due to char barrier formation on the surface of the nanocomposites. |
first_indexed | 2024-03-10T11:03:14Z |
format | Article |
id | doaj.art-3c792e74b8eb48ac808d29be58a65dd7 |
institution | Directory Open Access Journal |
issn | 2076-3417 |
language | English |
last_indexed | 2024-03-10T11:03:14Z |
publishDate | 2021-05-01 |
publisher | MDPI AG |
record_format | Article |
series | Applied Sciences |
spelling | doaj.art-3c792e74b8eb48ac808d29be58a65dd72023-11-21T21:18:44ZengMDPI AGApplied Sciences2076-34172021-05-011111484610.3390/app11114846Mechanical Properties of Green Synthesized Graphene Nano-Composite SamplesMehdi Safari0Ricardo Alves de Sousa1Mazaher Salamat-Talab2Jalal Joudaki3Davood Ghanbari4Amir Bakhtiari5Department of Mechanical Engineering, Arak University of Technology, Arak 38181-41167, IranCenter for Mechanical Technology and Automation, Department of Mechanical Engineering, Campus de Santiago, University of Aveiro, 3810-183 Aveiro, PortugalDepartment of Mechanical Engineering, Arak University of Technology, Arak 38181-41167, IranDepartment of Mechanical Engineering, Arak University of Technology, Arak 38181-41167, IranDepartment of Science, Arak University of Technology, Arak 38181-41167, IranDepartment of Mechanical Engineering, Arak University of Technology, Arak 38181-41167, IranGraphene quantum dots are zero-dimensional nanoparticles that are used widely in advanced composite materials such as filtration membranes, adsorbent materials, optical devices, biomedical applications (especially biosensors), flame retardancy, and automotive, aerospace, agricultural and environmental applications. In this article, the mechanical properties (flexural strength, flexural strain and elastic modulus) of polymer-based nanocomposites will be investigated. The main novelty of the current work is the green synthesis of graphene quantum dots which were extracted from lemon juice. XRD and FTIR tests have been conducted to determine the composition of the prepared powder. The polyester resin and graphene quantum dots were mixed with different weight percentages (0.25%, 0.5% and 1% wt. graphene) and processed to fabricate nanocomposite samples. The mechanical properties of the prepared samples were measured according to the ASTM D790-17 standard testing method. The experimental results show that the strength increased from 80 MPa to about 112 MPa (40% increase in strength) by adding 0.25% wt. graphene quantum dots. The flexural modulus decreased from 2.70 GPa to 2.06 GPa by adding 1% wt. graphene content (23% decrease). The flexural strain increased considerably (up to 14.2%) by adding 1% wt. graphene quantum dots. Consequently, the ductility of the nanocomposites increased by adding green synthesized graphene quantum dots. The fracture behavior changed from brittle fracture mode to ductile fracture mode by adding the graphene quantum dots. Additionally, a flame retardancy test has been carried out by implementing the UL-94 test. The fabricated nanocomposites showed fire retardancy due to char barrier formation on the surface of the nanocomposites.https://www.mdpi.com/2076-3417/11/11/4846polymer-based nanocompositesgraphenegreen synthesizenanoparticlesflexural properties |
spellingShingle | Mehdi Safari Ricardo Alves de Sousa Mazaher Salamat-Talab Jalal Joudaki Davood Ghanbari Amir Bakhtiari Mechanical Properties of Green Synthesized Graphene Nano-Composite Samples Applied Sciences polymer-based nanocomposites graphene green synthesize nanoparticles flexural properties |
title | Mechanical Properties of Green Synthesized Graphene Nano-Composite Samples |
title_full | Mechanical Properties of Green Synthesized Graphene Nano-Composite Samples |
title_fullStr | Mechanical Properties of Green Synthesized Graphene Nano-Composite Samples |
title_full_unstemmed | Mechanical Properties of Green Synthesized Graphene Nano-Composite Samples |
title_short | Mechanical Properties of Green Synthesized Graphene Nano-Composite Samples |
title_sort | mechanical properties of green synthesized graphene nano composite samples |
topic | polymer-based nanocomposites graphene green synthesize nanoparticles flexural properties |
url | https://www.mdpi.com/2076-3417/11/11/4846 |
work_keys_str_mv | AT mehdisafari mechanicalpropertiesofgreensynthesizedgraphenenanocompositesamples AT ricardoalvesdesousa mechanicalpropertiesofgreensynthesizedgraphenenanocompositesamples AT mazahersalamattalab mechanicalpropertiesofgreensynthesizedgraphenenanocompositesamples AT jalaljoudaki mechanicalpropertiesofgreensynthesizedgraphenenanocompositesamples AT davoodghanbari mechanicalpropertiesofgreensynthesizedgraphenenanocompositesamples AT amirbakhtiari mechanicalpropertiesofgreensynthesizedgraphenenanocompositesamples |