Relative impacts of climate change and land cover change on streamflow using SWAT in the Clackamas River Watershed, USA
To understand the spatial–temporal pattern of climate and land cover (CLC) change effects on hydrology, we used three land cover change (LCC) coupled scenarios to estimate the changes in streamflow metrics in the Clackamas River Watershed in Oregon for the 2050s (2040–2069) and the 2080s (2070–2099)...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IWA Publishing
2021-08-01
|
Series: | Journal of Water and Climate Change |
Subjects: | |
Online Access: | http://jwcc.iwaponline.com/content/12/5/1454 |
_version_ | 1818841172517322752 |
---|---|
author | Junjie Chen Heejun Chang |
author_facet | Junjie Chen Heejun Chang |
author_sort | Junjie Chen |
collection | DOAJ |
description | To understand the spatial–temporal pattern of climate and land cover (CLC) change effects on hydrology, we used three land cover change (LCC) coupled scenarios to estimate the changes in streamflow metrics in the Clackamas River Watershed in Oregon for the 2050s (2040–2069) and the 2080s (2070–2099). Coupled scenarios, which were split into individual and combined simulations such as climate change (CC), LCC, CLC change, and daily streamflow were simulated in the Soil and Water Assessment Tool. The interannual variability of streamflow was higher in the lower urbanized area than the upper forested region. The watershed runoff was projected to be more sensitive to CC than LCC. Under the CLC scenario, the top 10% peak flow and the 7-day low flow are expected to increase (2–19%) and decrease (+9 to −20 cm s), respectively, in both future periods. The center timing of runoff in the year is projected to shift 2–3 weeks earlier in response to warming temperature and more winter precipitation falling as rain. High streamflow variability in our findings suggests that uncertainties can stem from both climate models and hydrologic model parameters, calling for more adaptive water resource management in the watershed. HIGHLIGHTS
Tightly coupled CLC change scenarios were used to model flow in the Soil and Water Assessment Tool.;
Snow-influenced, forested watershed is more sensitive to CC than LCC.;
Hydrologic variability is higher in the urban, agricultural part than the forested part.;
Top 10% flow is projected to increase, while low flow is projected to decline.;
Warming will shift the center timing of flow volume earlier from mid-May to late-April.; |
first_indexed | 2024-12-19T04:21:51Z |
format | Article |
id | doaj.art-3c7a4045b95f43cf8bde700b686da907 |
institution | Directory Open Access Journal |
issn | 2040-2244 2408-9354 |
language | English |
last_indexed | 2024-12-19T04:21:51Z |
publishDate | 2021-08-01 |
publisher | IWA Publishing |
record_format | Article |
series | Journal of Water and Climate Change |
spelling | doaj.art-3c7a4045b95f43cf8bde700b686da9072022-12-21T20:36:08ZengIWA PublishingJournal of Water and Climate Change2040-22442408-93542021-08-011251454147010.2166/wcc.2020.123123Relative impacts of climate change and land cover change on streamflow using SWAT in the Clackamas River Watershed, USAJunjie Chen0Heejun Chang1 Department of Geography, Portland State University, 1721 SW Broadway, Portland, OR 97201, USA Department of Geography, Portland State University, 1721 SW Broadway, Portland, OR 97201, USA To understand the spatial–temporal pattern of climate and land cover (CLC) change effects on hydrology, we used three land cover change (LCC) coupled scenarios to estimate the changes in streamflow metrics in the Clackamas River Watershed in Oregon for the 2050s (2040–2069) and the 2080s (2070–2099). Coupled scenarios, which were split into individual and combined simulations such as climate change (CC), LCC, CLC change, and daily streamflow were simulated in the Soil and Water Assessment Tool. The interannual variability of streamflow was higher in the lower urbanized area than the upper forested region. The watershed runoff was projected to be more sensitive to CC than LCC. Under the CLC scenario, the top 10% peak flow and the 7-day low flow are expected to increase (2–19%) and decrease (+9 to −20 cm s), respectively, in both future periods. The center timing of runoff in the year is projected to shift 2–3 weeks earlier in response to warming temperature and more winter precipitation falling as rain. High streamflow variability in our findings suggests that uncertainties can stem from both climate models and hydrologic model parameters, calling for more adaptive water resource management in the watershed. HIGHLIGHTS Tightly coupled CLC change scenarios were used to model flow in the Soil and Water Assessment Tool.; Snow-influenced, forested watershed is more sensitive to CC than LCC.; Hydrologic variability is higher in the urban, agricultural part than the forested part.; Top 10% flow is projected to increase, while low flow is projected to decline.; Warming will shift the center timing of flow volume earlier from mid-May to late-April.;http://jwcc.iwaponline.com/content/12/5/1454climate changeland cover changestreamflow indexswat modeling |
spellingShingle | Junjie Chen Heejun Chang Relative impacts of climate change and land cover change on streamflow using SWAT in the Clackamas River Watershed, USA Journal of Water and Climate Change climate change land cover change streamflow index swat modeling |
title | Relative impacts of climate change and land cover change on streamflow using SWAT in the Clackamas River Watershed, USA |
title_full | Relative impacts of climate change and land cover change on streamflow using SWAT in the Clackamas River Watershed, USA |
title_fullStr | Relative impacts of climate change and land cover change on streamflow using SWAT in the Clackamas River Watershed, USA |
title_full_unstemmed | Relative impacts of climate change and land cover change on streamflow using SWAT in the Clackamas River Watershed, USA |
title_short | Relative impacts of climate change and land cover change on streamflow using SWAT in the Clackamas River Watershed, USA |
title_sort | relative impacts of climate change and land cover change on streamflow using swat in the clackamas river watershed usa |
topic | climate change land cover change streamflow index swat modeling |
url | http://jwcc.iwaponline.com/content/12/5/1454 |
work_keys_str_mv | AT junjiechen relativeimpactsofclimatechangeandlandcoverchangeonstreamflowusingswatintheclackamasriverwatershedusa AT heejunchang relativeimpactsofclimatechangeandlandcoverchangeonstreamflowusingswatintheclackamasriverwatershedusa |