Effect of Temperature on Ultrasonic Nonlinear Parameters of Carbonated Concrete
In order to explore the monitoring technique of concrete carbonation in various temperatures, longitudinal ultrasonic nonlinear parameters of carbonated concrete are measured by using an embedded composite piezoelectric transducer (ECPT) and a surface-mounted transducer. The effect of temperature fr...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-12-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/15/24/8797 |
_version_ | 1797456579953426432 |
---|---|
author | Jinzhong Zhao Jin Wu Xuejun Chen Ruifu Zeng |
author_facet | Jinzhong Zhao Jin Wu Xuejun Chen Ruifu Zeng |
author_sort | Jinzhong Zhao |
collection | DOAJ |
description | In order to explore the monitoring technique of concrete carbonation in various temperatures, longitudinal ultrasonic nonlinear parameters of carbonated concrete are measured by using an embedded composite piezoelectric transducer (ECPT) and a surface-mounted transducer. The effect of temperature from −20 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C to 40 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C with a temperature interval of 5 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C and water–cement ratio on the measurements of ultrasonic parameters for carbonated concrete is investigated. The ultrasonic transmission detection method and the second harmonic generation (SHG) technique for longitudinal waves are used in the study. Results of the experiment demonstrate that ECPT is effective in the monitoring of the changes in ultrasonic parameters of carbonated concrete. At the temperature ranging from 15 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C to 40 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C, the increasing temperature slightly increases the relative nonlinear parameters of carbonated concrete. It decreases significantly that the relative nonlinear parameters of carbonated concrete measured at 0 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C compared with that at 10 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C. The configuration in this measurement is also appropriate for the assessment of carbonated concrete during carbonation time in low-temperature environments (below 0 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C). In the same carbonation time, the relative nonlinear parameters also increase slightly when the temperature is at −20 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C to 0 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C, but it does not change too much. Furthermore, there is a more significant variation of the nonlinear parameters in the same carbonation time for the specimens with a high water–cement ratio than that with a low one. |
first_indexed | 2024-03-09T16:08:52Z |
format | Article |
id | doaj.art-3c7b4391b1774fd1bd3e77ae74ff5935 |
institution | Directory Open Access Journal |
issn | 1996-1944 |
language | English |
last_indexed | 2024-03-09T16:08:52Z |
publishDate | 2022-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Materials |
spelling | doaj.art-3c7b4391b1774fd1bd3e77ae74ff59352023-11-24T16:21:50ZengMDPI AGMaterials1996-19442022-12-011524879710.3390/ma15248797Effect of Temperature on Ultrasonic Nonlinear Parameters of Carbonated ConcreteJinzhong Zhao0Jin Wu1Xuejun Chen2Ruifu Zeng3College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, ChinaCollege of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, ChinaEastern Airports, Nanjing 210016, ChinaEastern Airports, Nanjing 210016, ChinaIn order to explore the monitoring technique of concrete carbonation in various temperatures, longitudinal ultrasonic nonlinear parameters of carbonated concrete are measured by using an embedded composite piezoelectric transducer (ECPT) and a surface-mounted transducer. The effect of temperature from −20 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C to 40 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C with a temperature interval of 5 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C and water–cement ratio on the measurements of ultrasonic parameters for carbonated concrete is investigated. The ultrasonic transmission detection method and the second harmonic generation (SHG) technique for longitudinal waves are used in the study. Results of the experiment demonstrate that ECPT is effective in the monitoring of the changes in ultrasonic parameters of carbonated concrete. At the temperature ranging from 15 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C to 40 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C, the increasing temperature slightly increases the relative nonlinear parameters of carbonated concrete. It decreases significantly that the relative nonlinear parameters of carbonated concrete measured at 0 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C compared with that at 10 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C. The configuration in this measurement is also appropriate for the assessment of carbonated concrete during carbonation time in low-temperature environments (below 0 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C). In the same carbonation time, the relative nonlinear parameters also increase slightly when the temperature is at −20 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C to 0 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C, but it does not change too much. Furthermore, there is a more significant variation of the nonlinear parameters in the same carbonation time for the specimens with a high water–cement ratio than that with a low one.https://www.mdpi.com/1996-1944/15/24/8797concrete carbonationnonlinear parametertemperature effectsembedded composite piezoelectric transducernondestructive testing |
spellingShingle | Jinzhong Zhao Jin Wu Xuejun Chen Ruifu Zeng Effect of Temperature on Ultrasonic Nonlinear Parameters of Carbonated Concrete Materials concrete carbonation nonlinear parameter temperature effects embedded composite piezoelectric transducer nondestructive testing |
title | Effect of Temperature on Ultrasonic Nonlinear Parameters of Carbonated Concrete |
title_full | Effect of Temperature on Ultrasonic Nonlinear Parameters of Carbonated Concrete |
title_fullStr | Effect of Temperature on Ultrasonic Nonlinear Parameters of Carbonated Concrete |
title_full_unstemmed | Effect of Temperature on Ultrasonic Nonlinear Parameters of Carbonated Concrete |
title_short | Effect of Temperature on Ultrasonic Nonlinear Parameters of Carbonated Concrete |
title_sort | effect of temperature on ultrasonic nonlinear parameters of carbonated concrete |
topic | concrete carbonation nonlinear parameter temperature effects embedded composite piezoelectric transducer nondestructive testing |
url | https://www.mdpi.com/1996-1944/15/24/8797 |
work_keys_str_mv | AT jinzhongzhao effectoftemperatureonultrasonicnonlinearparametersofcarbonatedconcrete AT jinwu effectoftemperatureonultrasonicnonlinearparametersofcarbonatedconcrete AT xuejunchen effectoftemperatureonultrasonicnonlinearparametersofcarbonatedconcrete AT ruifuzeng effectoftemperatureonultrasonicnonlinearparametersofcarbonatedconcrete |