An integrated approach for physical, economic, and demographic evaluation of coastal flood hazard adaptation in Santa Monica Bay, California
The increased risk of coastal flooding associated with climate-change driven sea level rise threatens to displace communities and cause substantial damage to infrastructure. Site-specific adaptation planning is necessary to mitigate the negative impacts of flooding on coastal residents and the built...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2022-11-01
|
Series: | Frontiers in Marine Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fmars.2022.1052373/full |
_version_ | 1828119432902213632 |
---|---|
author | Klaus Schroder Michelle A. Hummel Kevin M. Befus Patrick L. Barnard |
author_facet | Klaus Schroder Michelle A. Hummel Kevin M. Befus Patrick L. Barnard |
author_sort | Klaus Schroder |
collection | DOAJ |
description | The increased risk of coastal flooding associated with climate-change driven sea level rise threatens to displace communities and cause substantial damage to infrastructure. Site-specific adaptation planning is necessary to mitigate the negative impacts of flooding on coastal residents and the built environment. Cost-benefit analyses used to evaluate coastal adaption strategies have traditionally focused on economic considerations, often overlooking potential demographic impacts that can directly influence vulnerability in coastal communities. Here, we present a transferable framework that couples hydrodynamic modeling of flooding driven by sea level rise and storm scenarios with site-specific building stock and census block-level demographic data. We assess the efficacy of multiple coastal adaptation strategies at reducing flooding, economic damages, and impacts to the local population. We apply this framework to evaluate a range of engineered, nature-based, and hybrid adaptation strategies for a portion of Santa Monica Bay, California. Overall, we find that dual approaches that provide protection along beaches using dunes or seawalls and along inlets using sluice gates perform best at reducing or eliminating flooding, damages, and population impacts. Adaptation strategies that include a sluice gate and partial or no protection along the beach are effective at reducing flooding around inlets but can exacerbate flooding elsewhere, leading to unintended impacts on residents. Our results also indicate trade-offs between economic and social risk-reduction priorities. The proposed framework allows for a comprehensive evaluation of coastal protection strategies across multiple objectives. Understanding how coastal adaptation strategies affect hydrodynamic, economic, and social factors at a local scale can enable more effective and equitable planning approaches. |
first_indexed | 2024-04-11T13:49:11Z |
format | Article |
id | doaj.art-3c80d39b60704fcfb2f06bb757ffc4b6 |
institution | Directory Open Access Journal |
issn | 2296-7745 |
language | English |
last_indexed | 2024-04-11T13:49:11Z |
publishDate | 2022-11-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Marine Science |
spelling | doaj.art-3c80d39b60704fcfb2f06bb757ffc4b62022-12-22T04:20:47ZengFrontiers Media S.A.Frontiers in Marine Science2296-77452022-11-01910.3389/fmars.2022.10523731052373An integrated approach for physical, economic, and demographic evaluation of coastal flood hazard adaptation in Santa Monica Bay, CaliforniaKlaus Schroder0Michelle A. Hummel1Kevin M. Befus2Patrick L. Barnard3Department of Civil Engineering, University of Texas at Arlington, Arlington, TX, United StatesDepartment of Civil Engineering, University of Texas at Arlington, Arlington, TX, United StatesDepartment of Geosciences, University of Arkansas, Fayetteville, AR, United StatesU.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA, United StatesThe increased risk of coastal flooding associated with climate-change driven sea level rise threatens to displace communities and cause substantial damage to infrastructure. Site-specific adaptation planning is necessary to mitigate the negative impacts of flooding on coastal residents and the built environment. Cost-benefit analyses used to evaluate coastal adaption strategies have traditionally focused on economic considerations, often overlooking potential demographic impacts that can directly influence vulnerability in coastal communities. Here, we present a transferable framework that couples hydrodynamic modeling of flooding driven by sea level rise and storm scenarios with site-specific building stock and census block-level demographic data. We assess the efficacy of multiple coastal adaptation strategies at reducing flooding, economic damages, and impacts to the local population. We apply this framework to evaluate a range of engineered, nature-based, and hybrid adaptation strategies for a portion of Santa Monica Bay, California. Overall, we find that dual approaches that provide protection along beaches using dunes or seawalls and along inlets using sluice gates perform best at reducing or eliminating flooding, damages, and population impacts. Adaptation strategies that include a sluice gate and partial or no protection along the beach are effective at reducing flooding around inlets but can exacerbate flooding elsewhere, leading to unintended impacts on residents. Our results also indicate trade-offs between economic and social risk-reduction priorities. The proposed framework allows for a comprehensive evaluation of coastal protection strategies across multiple objectives. Understanding how coastal adaptation strategies affect hydrodynamic, economic, and social factors at a local scale can enable more effective and equitable planning approaches.https://www.frontiersin.org/articles/10.3389/fmars.2022.1052373/fullcoastal floodingsea level riseadaptationmulti-criteria analysishydrodynamic modelingCalifornia |
spellingShingle | Klaus Schroder Michelle A. Hummel Kevin M. Befus Patrick L. Barnard An integrated approach for physical, economic, and demographic evaluation of coastal flood hazard adaptation in Santa Monica Bay, California Frontiers in Marine Science coastal flooding sea level rise adaptation multi-criteria analysis hydrodynamic modeling California |
title | An integrated approach for physical, economic, and demographic evaluation of coastal flood hazard adaptation in Santa Monica Bay, California |
title_full | An integrated approach for physical, economic, and demographic evaluation of coastal flood hazard adaptation in Santa Monica Bay, California |
title_fullStr | An integrated approach for physical, economic, and demographic evaluation of coastal flood hazard adaptation in Santa Monica Bay, California |
title_full_unstemmed | An integrated approach for physical, economic, and demographic evaluation of coastal flood hazard adaptation in Santa Monica Bay, California |
title_short | An integrated approach for physical, economic, and demographic evaluation of coastal flood hazard adaptation in Santa Monica Bay, California |
title_sort | integrated approach for physical economic and demographic evaluation of coastal flood hazard adaptation in santa monica bay california |
topic | coastal flooding sea level rise adaptation multi-criteria analysis hydrodynamic modeling California |
url | https://www.frontiersin.org/articles/10.3389/fmars.2022.1052373/full |
work_keys_str_mv | AT klausschroder anintegratedapproachforphysicaleconomicanddemographicevaluationofcoastalfloodhazardadaptationinsantamonicabaycalifornia AT michelleahummel anintegratedapproachforphysicaleconomicanddemographicevaluationofcoastalfloodhazardadaptationinsantamonicabaycalifornia AT kevinmbefus anintegratedapproachforphysicaleconomicanddemographicevaluationofcoastalfloodhazardadaptationinsantamonicabaycalifornia AT patricklbarnard anintegratedapproachforphysicaleconomicanddemographicevaluationofcoastalfloodhazardadaptationinsantamonicabaycalifornia AT klausschroder integratedapproachforphysicaleconomicanddemographicevaluationofcoastalfloodhazardadaptationinsantamonicabaycalifornia AT michelleahummel integratedapproachforphysicaleconomicanddemographicevaluationofcoastalfloodhazardadaptationinsantamonicabaycalifornia AT kevinmbefus integratedapproachforphysicaleconomicanddemographicevaluationofcoastalfloodhazardadaptationinsantamonicabaycalifornia AT patricklbarnard integratedapproachforphysicaleconomicanddemographicevaluationofcoastalfloodhazardadaptationinsantamonicabaycalifornia |