Improved the Characterization of Flood Monitoring Based on Reconstructed Daily GRACE Solutions over the Haihe River Basin

Flood events have caused huge disasters with regard to human life and economic development, especially short-term flood events that have occurred in recent years. Gravity Recovery and Climate Experiment (GRACE) satellites can directly detect the spatiotemporal characteristics of terrestrial water st...

Full description

Bibliographic Details
Main Authors: Shengkun Nie, Wei Zheng, Wenjie Yin, Yulong Zhong, Yifan Shen, Kezhao Li
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/6/1564
Description
Summary:Flood events have caused huge disasters with regard to human life and economic development, especially short-term flood events that have occurred in recent years. Gravity Recovery and Climate Experiment (GRACE) satellites can directly detect the spatiotemporal characteristics of terrestrial water storage anomalies (TWSA), which play an important role in capturing flood signals. However, the monthly resolution of GRACE-derived TWSA limits its application in monitoring sub-monthly flood events. Therefore, this paper first reconstructs the daily TWSA based on a statistical model with near real-time precipitation and temperature as input variables, and then three daily flood monitoring indexes are developed based on the reconstructed TWSA. Furthermore, these indexes are employed to evaluate the temporal and spatial characteristics of the 2016 short-term flood event in the Haihe River basin (HRB), including the flood potential index (FPI), water storage deficit index (WSDI), and combined climate deviation index (CCDI). In contrast to previous studies, the temporal resolution of TWSA-based indexes is improved from the monthly scale to the daily scale, which largely improves the temporal characterization of flood monitoring. Results demonstrate that (1) among ten kinds of “Temperature-Precipitation” combinations, the reconstructed TWSA based on CN05.1-CN05.1 match well with the GRACE TWSA, as well as publicly available daily TWSA datasets with a Nash-Sutcliffe efficiency coefficient (<i>NSE)</i> of 0.96 and 0.52 ~ 0.81 respectively. (2) The short-term flood characteristics can be better characterized by the reconstructed daily TWSA based on CN05.1-CN05.1, reaching the peak of 216.19 mm on July 20 in the flood center. Additionally, the spatial characteristics of the equivalent water height (EWH) are detected to evolve from southwest to northeast during the short-term flood. (3) FPI, WSDI, and CCDI are proven to be effective in monitoring flood events in the HRB, which validates the reliability of the reconstructed daily TWSA. Moreover, compared to the 56% and 66% coverage of damage quantified by FPI and CCDI, the 45% damage coverage of the flood mapped by WSDI is more consistent with the governmental reports within the HRB. This paper is expected to provide a valuable reference for the assessment of short-term events caused by extreme climate change.
ISSN:2072-4292