Bioplastic design using multitask deep neural networks

Biodegradable polyhydroxyalkanoates are promising replacements for non-degradable plastics. Here, neural network property predictors are applied to a search space of approximately 1.4 million candidates, identifying 14 polyhydroxyalkanoates that could replace widely used petroleum-based plastics.

Bibliographic Details
Main Authors: Christopher Kuenneth, Jessica Lalonde, Babetta L. Marrone, Carl N. Iverson, Rampi Ramprasad, Ghanshyam Pilania
Format: Article
Language:English
Published: Nature Portfolio 2022-12-01
Series:Communications Materials
Online Access:https://doi.org/10.1038/s43246-022-00319-2
_version_ 1811190240859127808
author Christopher Kuenneth
Jessica Lalonde
Babetta L. Marrone
Carl N. Iverson
Rampi Ramprasad
Ghanshyam Pilania
author_facet Christopher Kuenneth
Jessica Lalonde
Babetta L. Marrone
Carl N. Iverson
Rampi Ramprasad
Ghanshyam Pilania
author_sort Christopher Kuenneth
collection DOAJ
description Biodegradable polyhydroxyalkanoates are promising replacements for non-degradable plastics. Here, neural network property predictors are applied to a search space of approximately 1.4 million candidates, identifying 14 polyhydroxyalkanoates that could replace widely used petroleum-based plastics.
first_indexed 2024-04-11T14:46:55Z
format Article
id doaj.art-3c9921783df34dd3ab1b366c1b850d84
institution Directory Open Access Journal
issn 2662-4443
language English
last_indexed 2024-04-11T14:46:55Z
publishDate 2022-12-01
publisher Nature Portfolio
record_format Article
series Communications Materials
spelling doaj.art-3c9921783df34dd3ab1b366c1b850d842022-12-22T04:17:35ZengNature PortfolioCommunications Materials2662-44432022-12-013111010.1038/s43246-022-00319-2Bioplastic design using multitask deep neural networksChristopher Kuenneth0Jessica Lalonde1Babetta L. Marrone2Carl N. Iverson3Rampi Ramprasad4Ghanshyam Pilania5Materials Science and Technology Division, Los Alamos National LaboratoryBioscience Division, Los Alamos National LaboratoryBioscience Division, Los Alamos National LaboratoryChemistry Division, Los Alamos National LaboratorySchool of Materials Science and Engineering, Georgia Institute of TechnologyMaterials Science and Technology Division, Los Alamos National LaboratoryBiodegradable polyhydroxyalkanoates are promising replacements for non-degradable plastics. Here, neural network property predictors are applied to a search space of approximately 1.4 million candidates, identifying 14 polyhydroxyalkanoates that could replace widely used petroleum-based plastics.https://doi.org/10.1038/s43246-022-00319-2
spellingShingle Christopher Kuenneth
Jessica Lalonde
Babetta L. Marrone
Carl N. Iverson
Rampi Ramprasad
Ghanshyam Pilania
Bioplastic design using multitask deep neural networks
Communications Materials
title Bioplastic design using multitask deep neural networks
title_full Bioplastic design using multitask deep neural networks
title_fullStr Bioplastic design using multitask deep neural networks
title_full_unstemmed Bioplastic design using multitask deep neural networks
title_short Bioplastic design using multitask deep neural networks
title_sort bioplastic design using multitask deep neural networks
url https://doi.org/10.1038/s43246-022-00319-2
work_keys_str_mv AT christopherkuenneth bioplasticdesignusingmultitaskdeepneuralnetworks
AT jessicalalonde bioplasticdesignusingmultitaskdeepneuralnetworks
AT babettalmarrone bioplasticdesignusingmultitaskdeepneuralnetworks
AT carlniverson bioplasticdesignusingmultitaskdeepneuralnetworks
AT rampiramprasad bioplasticdesignusingmultitaskdeepneuralnetworks
AT ghanshyampilania bioplasticdesignusingmultitaskdeepneuralnetworks