Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USA

Trends in living aboveground biomass and inputs to the pool of coarse woody debris (CWD) in an undisturbed, old-growth hemlock-northern hardwood forest in northern MI were estimated from multi-decade observations of permanent plots. Growth and demographic data from seven plot censuses over 47 years...

Full description

Bibliographic Details
Main Author: Kerry D. Woods
Format: Article
Language:English
Published: PeerJ Inc. 2014-09-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/598.pdf
_version_ 1797420477447143424
author Kerry D. Woods
author_facet Kerry D. Woods
author_sort Kerry D. Woods
collection DOAJ
description Trends in living aboveground biomass and inputs to the pool of coarse woody debris (CWD) in an undisturbed, old-growth hemlock-northern hardwood forest in northern MI were estimated from multi-decade observations of permanent plots. Growth and demographic data from seven plot censuses over 47 years (1962–2009), combined with one-time measurement of CWD pools, help assess biomass/carbon status of this landscape. Are trends consistent with traditional notions of late-successional forests as equilibrial ecosystems? Specifically, do biomass pools and CWD inputs show consistent long-term trends and relationships, and can living and dead biomass pools and trends be related to forest composition and history? Aboveground living biomass densities, estimated using standard allometric relationships, range from 360–450 Mg/ha among sampled stands and types; these values are among the highest recorded for northeastern North American forests. Biomass densities showed significant decade-scale variation, but no consistent trends over the full study period (one stand, originating following an 1830 fire, showed an aggrading trend during the first 25 years of the study). Even though total above-ground biomass pools are neither increasing nor decreasing, they have been increasingly dominated, over the full study period, by very large (>70 cm dbh) stems and by the most shade-tolerant species (Acer saccharum and Tsuga canadensis).CWD pools measured in 2007 averaged 151 m3/ha, with highest values in Acer-dominated stands. Snag densities averaged 27/ha, but varied nearly ten-fold with canopy composition (highest in Tsuga-dominated stands, lowest in Acer-dominated); snags constituted 10–50% of CWD biomass. Annualized CWD inputs from tree mortality over the full study period averaged 1.9–3.2 Mg/ha/yr, depending on stand and species composition. CWD input rates tended to increase over the course of the study. Input rates may be expected to increase over longer-term observations because, (a) living biomass is increasingly dominated by very large trees whose dead trunks have longer residence time in the CWD pool, and (b) infrequent major disturbances, thought to be important in the dynamics of these forests, have not occurred during the study period but would be expected to produce major, episodic pulses in CWD input.Few fragments of old-growth cool-temperate forests remain, but such forests can constitute a very large carbon pool on a per-area basis. The carbon sink/source status of these forests remains unclear. While aboveground living biomass at this study site shows no strong aggrading or declining trend over the last half-century, this remains a modest span in the innate time-scale of late-successional forest. The effects of rare disturbances, long-term shifts in composition and size structure, and changes in soil carbon and CWD pools may all influence long-term carbon status.
first_indexed 2024-03-09T07:02:01Z
format Article
id doaj.art-3c9c5fd71aea4f538aeeb0e25151a08c
institution Directory Open Access Journal
issn 2167-8359
language English
last_indexed 2024-03-09T07:02:01Z
publishDate 2014-09-01
publisher PeerJ Inc.
record_format Article
series PeerJ
spelling doaj.art-3c9c5fd71aea4f538aeeb0e25151a08c2023-12-03T09:48:18ZengPeerJ Inc.PeerJ2167-83592014-09-012e59810.7717/peerj.598598Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USAKerry D. Woods0Natural Sciences, Bennington College, Bennington, VT, USATrends in living aboveground biomass and inputs to the pool of coarse woody debris (CWD) in an undisturbed, old-growth hemlock-northern hardwood forest in northern MI were estimated from multi-decade observations of permanent plots. Growth and demographic data from seven plot censuses over 47 years (1962–2009), combined with one-time measurement of CWD pools, help assess biomass/carbon status of this landscape. Are trends consistent with traditional notions of late-successional forests as equilibrial ecosystems? Specifically, do biomass pools and CWD inputs show consistent long-term trends and relationships, and can living and dead biomass pools and trends be related to forest composition and history? Aboveground living biomass densities, estimated using standard allometric relationships, range from 360–450 Mg/ha among sampled stands and types; these values are among the highest recorded for northeastern North American forests. Biomass densities showed significant decade-scale variation, but no consistent trends over the full study period (one stand, originating following an 1830 fire, showed an aggrading trend during the first 25 years of the study). Even though total above-ground biomass pools are neither increasing nor decreasing, they have been increasingly dominated, over the full study period, by very large (>70 cm dbh) stems and by the most shade-tolerant species (Acer saccharum and Tsuga canadensis).CWD pools measured in 2007 averaged 151 m3/ha, with highest values in Acer-dominated stands. Snag densities averaged 27/ha, but varied nearly ten-fold with canopy composition (highest in Tsuga-dominated stands, lowest in Acer-dominated); snags constituted 10–50% of CWD biomass. Annualized CWD inputs from tree mortality over the full study period averaged 1.9–3.2 Mg/ha/yr, depending on stand and species composition. CWD input rates tended to increase over the course of the study. Input rates may be expected to increase over longer-term observations because, (a) living biomass is increasingly dominated by very large trees whose dead trunks have longer residence time in the CWD pool, and (b) infrequent major disturbances, thought to be important in the dynamics of these forests, have not occurred during the study period but would be expected to produce major, episodic pulses in CWD input.Few fragments of old-growth cool-temperate forests remain, but such forests can constitute a very large carbon pool on a per-area basis. The carbon sink/source status of these forests remains unclear. While aboveground living biomass at this study site shows no strong aggrading or declining trend over the last half-century, this remains a modest span in the innate time-scale of late-successional forest. The effects of rare disturbances, long-term shifts in composition and size structure, and changes in soil carbon and CWD pools may all influence long-term carbon status.https://peerj.com/articles/598.pdfLong-term studiesOld-growth forestForest carbon poolsNorthern hardwood forestTemperate forest
spellingShingle Kerry D. Woods
Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USA
PeerJ
Long-term studies
Old-growth forest
Forest carbon pools
Northern hardwood forest
Temperate forest
title Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USA
title_full Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USA
title_fullStr Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USA
title_full_unstemmed Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USA
title_short Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USA
title_sort multi decade biomass dynamics in an old growth hemlock northern hardwood forest michigan usa
topic Long-term studies
Old-growth forest
Forest carbon pools
Northern hardwood forest
Temperate forest
url https://peerj.com/articles/598.pdf
work_keys_str_mv AT kerrydwoods multidecadebiomassdynamicsinanoldgrowthhemlocknorthernhardwoodforestmichiganusa