Extended Riemann-Liouville type fractional derivative operator with applications

The main purpose of this paper is to introduce a class of new extended forms of the beta function, Gauss hypergeometric function and Appell-Lauricella hypergeometric functions by means of the modified Bessel function of the third kind. Some typical generating relations for these extended hypergeomet...

Full description

Bibliographic Details
Main Authors: Agarwal P., Nieto Juan J., Luo M.-J.
Format: Article
Language:English
Published: De Gruyter 2017-12-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2017-0137
_version_ 1818358402179399680
author Agarwal P.
Nieto Juan J.
Luo M.-J.
author_facet Agarwal P.
Nieto Juan J.
Luo M.-J.
author_sort Agarwal P.
collection DOAJ
description The main purpose of this paper is to introduce a class of new extended forms of the beta function, Gauss hypergeometric function and Appell-Lauricella hypergeometric functions by means of the modified Bessel function of the third kind. Some typical generating relations for these extended hypergeometric functions are obtained by defining the extension of the Riemann-Liouville fractional derivative operator. Their connections with elementary functions and Fox’s H-function are also presented.
first_indexed 2024-12-13T20:28:26Z
format Article
id doaj.art-3c9ebf90ad0547eaaf4af769c595d267
institution Directory Open Access Journal
issn 2391-5455
language English
last_indexed 2024-12-13T20:28:26Z
publishDate 2017-12-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj.art-3c9ebf90ad0547eaaf4af769c595d2672022-12-21T23:32:29ZengDe GruyterOpen Mathematics2391-54552017-12-011511667168110.1515/math-2017-0137math-2017-0137Extended Riemann-Liouville type fractional derivative operator with applicationsAgarwal P.0Nieto Juan J.1Luo M.-J.2Department of Mathematics, Anand International College of Engineering, Jaipur-303012, Republic of IndiaDepartamento de Estatística, Análise Matemática e Optimización, Instituto de Matemáticasd, Universidade de Santiago de Compostela, 15782Santiago de Compostela, SpainDepartment of Mathematics, East China Normal University, Shanghai200241, ChinaThe main purpose of this paper is to introduce a class of new extended forms of the beta function, Gauss hypergeometric function and Appell-Lauricella hypergeometric functions by means of the modified Bessel function of the third kind. Some typical generating relations for these extended hypergeometric functions are obtained by defining the extension of the Riemann-Liouville fractional derivative operator. Their connections with elementary functions and Fox’s H-function are also presented.https://doi.org/10.1515/math-2017-0137gamma functionextended beta functionriemann-liouville fractional derivativehypergeometric functionsfox h-functiongenerating functionsmellin transformintegral representations26a3333b1533b2033c0533c2033c65
spellingShingle Agarwal P.
Nieto Juan J.
Luo M.-J.
Extended Riemann-Liouville type fractional derivative operator with applications
Open Mathematics
gamma function
extended beta function
riemann-liouville fractional derivative
hypergeometric functions
fox h-function
generating functions
mellin transform
integral representations
26a33
33b15
33b20
33c05
33c20
33c65
title Extended Riemann-Liouville type fractional derivative operator with applications
title_full Extended Riemann-Liouville type fractional derivative operator with applications
title_fullStr Extended Riemann-Liouville type fractional derivative operator with applications
title_full_unstemmed Extended Riemann-Liouville type fractional derivative operator with applications
title_short Extended Riemann-Liouville type fractional derivative operator with applications
title_sort extended riemann liouville type fractional derivative operator with applications
topic gamma function
extended beta function
riemann-liouville fractional derivative
hypergeometric functions
fox h-function
generating functions
mellin transform
integral representations
26a33
33b15
33b20
33c05
33c20
33c65
url https://doi.org/10.1515/math-2017-0137
work_keys_str_mv AT agarwalp extendedriemannliouvilletypefractionalderivativeoperatorwithapplications
AT nietojuanj extendedriemannliouvilletypefractionalderivativeoperatorwithapplications
AT luomj extendedriemannliouvilletypefractionalderivativeoperatorwithapplications