Mechanisms of the antinociceptive action of (−) Epicatechin obtained from the hydroalcoholic fraction of <it>Combretum leprosum</it> Mart & Eic in rodents
<p>Abstract</p> <p>Background</p> <p>The mechanisms of the antinociceptive activity of (−) epicatechin (EPI), a compound isolated from the hydroalcoholic fraction of <it>Combreum leprosum</it> Mart & Eicher.</p> <p>Methods</p> <p>...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2012-07-01
|
Series: | Journal of Biomedical Science |
Subjects: | |
Online Access: | http://www.jbiomedsci.com/content/19/1/68 |
_version_ | 1818824707535798272 |
---|---|
author | Lopes Luciano da Marques Rosemarie Fernandes Heliana Pereira Sergio da Ayres Mariane CC Chaves Mariana Almeida Fernanda RC |
author_facet | Lopes Luciano da Marques Rosemarie Fernandes Heliana Pereira Sergio da Ayres Mariane CC Chaves Mariana Almeida Fernanda RC |
author_sort | Lopes Luciano da |
collection | DOAJ |
description | <p>Abstract</p> <p>Background</p> <p>The mechanisms of the antinociceptive activity of (−) epicatechin (EPI), a compound isolated from the hydroalcoholic fraction of <it>Combreum leprosum</it> Mart & Eicher.</p> <p>Methods</p> <p>were assessed in the model of chemical nociception induced by glutamate (20 μmol/paw). To evaluate the mechanisms involved, the animals , male Swiss mice (25-30 g), received EPI (50 mg/kg p.o.) after pretreatment with naloxone (2 mg/kg s.c. opioid antagonist), glibenclamide (2 mg/kg s.c. antagonist K + channels sensitive to ATP), ketanserin (0.3 mg/kg s.c. antagonist of receptor 5-HT<sub>2A</sub>), yoimbine (0.15 mg/kg s.c. α2 adrenergic receptor antagonist), pindolol (1 mg/kg s.c. 5-HT1<sub>a</sub>/1<sub>b</sub> receptor antagonist), atropine (0.1 mg/kg s.c. muscarinic antagonist) and caffeine (3 mg/kg s.c. adenosine receptor antagonist), ondansetron (0.5 mg/kg s.c. for 5-HT<sub>3</sub> receptor) and L-arginine (600 mg/kg i.p.).</p> <p>Results</p> <p>The antinociceptive effect of EPI was reversed by pretreatment with naloxone and glibenclamide, ketanserin, yoimbine, atropine and pindolol, which demonstrates the involvement of opioid receptors and potassium channels sensitive to ATP, the serotoninergic (receptor 5HT<sub>1A</sub> and 5HT<sub>2A</sub>), adrenergic (receptor alpha 2) and cholinergic (muscarinic receptor) systems in the activities that were observed. The effects of EPI, however, were not reversed by pretreatment with caffeine, L-arginine or ondansetron, which shows that there is no involvement of 5HT<sub>3</sub> receptors or the purinergic and nitrergic systems in the antinociceptive effect of EPI. In the Open Field and Rotarod test, EPI had no significant effect, which shows that there was no central nervous system depressant or muscle relaxant effect on the results.</p> <p>Conclusions</p> <p>This study demonstrates that the antinociceptive activity of EPI in the glutamate model involves the participation of the opioid system, serotonin, adrenergic and cholinergic.</p> |
first_indexed | 2024-12-19T00:00:09Z |
format | Article |
id | doaj.art-3caa1b881798472cbb690dc7889f097a |
institution | Directory Open Access Journal |
issn | 1021-7770 1423-0127 |
language | English |
last_indexed | 2024-12-19T00:00:09Z |
publishDate | 2012-07-01 |
publisher | BMC |
record_format | Article |
series | Journal of Biomedical Science |
spelling | doaj.art-3caa1b881798472cbb690dc7889f097a2022-12-21T20:46:30ZengBMCJournal of Biomedical Science1021-77701423-01272012-07-011916810.1186/1423-0127-19-68Mechanisms of the antinociceptive action of (−) Epicatechin obtained from the hydroalcoholic fraction of <it>Combretum leprosum</it> Mart & Eic in rodentsLopes Luciano daMarques RosemarieFernandes HelianaPereira Sergio daAyres Mariane CCChaves MarianaAlmeida Fernanda RC<p>Abstract</p> <p>Background</p> <p>The mechanisms of the antinociceptive activity of (−) epicatechin (EPI), a compound isolated from the hydroalcoholic fraction of <it>Combreum leprosum</it> Mart & Eicher.</p> <p>Methods</p> <p>were assessed in the model of chemical nociception induced by glutamate (20 μmol/paw). To evaluate the mechanisms involved, the animals , male Swiss mice (25-30 g), received EPI (50 mg/kg p.o.) after pretreatment with naloxone (2 mg/kg s.c. opioid antagonist), glibenclamide (2 mg/kg s.c. antagonist K + channels sensitive to ATP), ketanserin (0.3 mg/kg s.c. antagonist of receptor 5-HT<sub>2A</sub>), yoimbine (0.15 mg/kg s.c. α2 adrenergic receptor antagonist), pindolol (1 mg/kg s.c. 5-HT1<sub>a</sub>/1<sub>b</sub> receptor antagonist), atropine (0.1 mg/kg s.c. muscarinic antagonist) and caffeine (3 mg/kg s.c. adenosine receptor antagonist), ondansetron (0.5 mg/kg s.c. for 5-HT<sub>3</sub> receptor) and L-arginine (600 mg/kg i.p.).</p> <p>Results</p> <p>The antinociceptive effect of EPI was reversed by pretreatment with naloxone and glibenclamide, ketanserin, yoimbine, atropine and pindolol, which demonstrates the involvement of opioid receptors and potassium channels sensitive to ATP, the serotoninergic (receptor 5HT<sub>1A</sub> and 5HT<sub>2A</sub>), adrenergic (receptor alpha 2) and cholinergic (muscarinic receptor) systems in the activities that were observed. The effects of EPI, however, were not reversed by pretreatment with caffeine, L-arginine or ondansetron, which shows that there is no involvement of 5HT<sub>3</sub> receptors or the purinergic and nitrergic systems in the antinociceptive effect of EPI. In the Open Field and Rotarod test, EPI had no significant effect, which shows that there was no central nervous system depressant or muscle relaxant effect on the results.</p> <p>Conclusions</p> <p>This study demonstrates that the antinociceptive activity of EPI in the glutamate model involves the participation of the opioid system, serotonin, adrenergic and cholinergic.</p>http://www.jbiomedsci.com/content/19/1/68(−) epicatechinAntinociceptionCombretum leprosumGlutamateSerotonin and opioids |
spellingShingle | Lopes Luciano da Marques Rosemarie Fernandes Heliana Pereira Sergio da Ayres Mariane CC Chaves Mariana Almeida Fernanda RC Mechanisms of the antinociceptive action of (−) Epicatechin obtained from the hydroalcoholic fraction of <it>Combretum leprosum</it> Mart & Eic in rodents Journal of Biomedical Science (−) epicatechin Antinociception Combretum leprosum Glutamate Serotonin and opioids |
title | Mechanisms of the antinociceptive action of (−) Epicatechin obtained from the hydroalcoholic fraction of <it>Combretum leprosum</it> Mart & Eic in rodents |
title_full | Mechanisms of the antinociceptive action of (−) Epicatechin obtained from the hydroalcoholic fraction of <it>Combretum leprosum</it> Mart & Eic in rodents |
title_fullStr | Mechanisms of the antinociceptive action of (−) Epicatechin obtained from the hydroalcoholic fraction of <it>Combretum leprosum</it> Mart & Eic in rodents |
title_full_unstemmed | Mechanisms of the antinociceptive action of (−) Epicatechin obtained from the hydroalcoholic fraction of <it>Combretum leprosum</it> Mart & Eic in rodents |
title_short | Mechanisms of the antinociceptive action of (−) Epicatechin obtained from the hydroalcoholic fraction of <it>Combretum leprosum</it> Mart & Eic in rodents |
title_sort | mechanisms of the antinociceptive action of epicatechin obtained from the hydroalcoholic fraction of it combretum leprosum it mart eic in rodents |
topic | (−) epicatechin Antinociception Combretum leprosum Glutamate Serotonin and opioids |
url | http://www.jbiomedsci.com/content/19/1/68 |
work_keys_str_mv | AT lopeslucianoda mechanismsoftheantinociceptiveactionofepicatechinobtainedfromthehydroalcoholicfractionofitcombretumleprosumitmarteicinrodents AT marquesrosemarie mechanismsoftheantinociceptiveactionofepicatechinobtainedfromthehydroalcoholicfractionofitcombretumleprosumitmarteicinrodents AT fernandesheliana mechanismsoftheantinociceptiveactionofepicatechinobtainedfromthehydroalcoholicfractionofitcombretumleprosumitmarteicinrodents AT pereirasergioda mechanismsoftheantinociceptiveactionofepicatechinobtainedfromthehydroalcoholicfractionofitcombretumleprosumitmarteicinrodents AT ayresmarianecc mechanismsoftheantinociceptiveactionofepicatechinobtainedfromthehydroalcoholicfractionofitcombretumleprosumitmarteicinrodents AT chavesmariana mechanismsoftheantinociceptiveactionofepicatechinobtainedfromthehydroalcoholicfractionofitcombretumleprosumitmarteicinrodents AT almeidafernandarc mechanismsoftheantinociceptiveactionofepicatechinobtainedfromthehydroalcoholicfractionofitcombretumleprosumitmarteicinrodents |