Summary: | Summary: Pathogen recognition and TNF receptors signal via receptor interacting serine/threonine kinase-3 (RIPK3) to cause cell death, including MLKL-mediated necroptosis and caspase-8-dependent apoptosis. However, the post-translational control of RIPK3 is not fully understood. Using mass-spectrometry, we identified that RIPK3 is ubiquitylated on K469. The expression of mutant RIPK3 K469R demonstrated that RIPK3 ubiquitylation can limit both RIPK3-mediated apoptosis and necroptosis. The enhanced cell death of overexpressed RIPK3 K469R and activated endogenous RIPK3 correlated with an overall increase in RIPK3 ubiquitylation. Ripk3K469R/K469R mice challenged with Salmonella displayed enhanced bacterial loads and reduced serum IFNγ. However, Ripk3K469R/K469R macrophages and dermal fibroblasts were not sensitized to RIPK3-mediated apoptotic or necroptotic signaling suggesting that, in these cells, there is functional redundancy with alternate RIPK3 ubiquitin-modified sites. Consistent with this idea, the mutation of other ubiquitylated RIPK3 residues also increased RIPK3 hyper-ubiquitylation and cell death. Therefore, the targeted ubiquitylation of RIPK3 may act as either a brake or accelerator of RIPK3-dependent killing.
|