Sehgal–Guseman-Type Fixed Point Theorem in <i>b</i>-Rectangular Metric Spaces

In this paper, we prove a Sehgal–Guseman-type fixed point theorem in b-rectangular metric spaces which provides a complete solution to an open problem raised by Zoran D. Mitrović (A note on a Banach’s fixed point theorem in <i>b</i>-rectangular metric space and <i>b</i>-metri...

Full description

Bibliographic Details
Main Authors: Dingwei Zheng, Guofei Ye, Dawei Liu
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/24/3149
_version_ 1797502634987356160
author Dingwei Zheng
Guofei Ye
Dawei Liu
author_facet Dingwei Zheng
Guofei Ye
Dawei Liu
author_sort Dingwei Zheng
collection DOAJ
description In this paper, we prove a Sehgal–Guseman-type fixed point theorem in b-rectangular metric spaces which provides a complete solution to an open problem raised by Zoran D. Mitrović (A note on a Banach’s fixed point theorem in <i>b</i>-rectangular metric space and <i>b</i>-metric space). The result presented in the paper generalizes and unifies some results in fixed point theory.
first_indexed 2024-03-10T03:37:54Z
format Article
id doaj.art-3caeddda241b4e5d840a76b59826c670
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T03:37:54Z
publishDate 2021-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-3caeddda241b4e5d840a76b59826c6702023-11-23T09:24:53ZengMDPI AGMathematics2227-73902021-12-01924314910.3390/math9243149Sehgal–Guseman-Type Fixed Point Theorem in <i>b</i>-Rectangular Metric SpacesDingwei Zheng0Guofei Ye1Dawei Liu2College of Mathematics and Information Science, Guangxi University, Nanning 530004, ChinaCollege of Mathematics and Information Science, Guangxi University, Nanning 530004, ChinaCollege of Mathematics and Information Science, Guangxi University, Nanning 530004, ChinaIn this paper, we prove a Sehgal–Guseman-type fixed point theorem in b-rectangular metric spaces which provides a complete solution to an open problem raised by Zoran D. Mitrović (A note on a Banach’s fixed point theorem in <i>b</i>-rectangular metric space and <i>b</i>-metric space). The result presented in the paper generalizes and unifies some results in fixed point theory.https://www.mdpi.com/2227-7390/9/24/3149fixed point<i>b</i>-metric spacerectangular metric space<i>b</i>-rectangular metric space
spellingShingle Dingwei Zheng
Guofei Ye
Dawei Liu
Sehgal–Guseman-Type Fixed Point Theorem in <i>b</i>-Rectangular Metric Spaces
Mathematics
fixed point
<i>b</i>-metric space
rectangular metric space
<i>b</i>-rectangular metric space
title Sehgal–Guseman-Type Fixed Point Theorem in <i>b</i>-Rectangular Metric Spaces
title_full Sehgal–Guseman-Type Fixed Point Theorem in <i>b</i>-Rectangular Metric Spaces
title_fullStr Sehgal–Guseman-Type Fixed Point Theorem in <i>b</i>-Rectangular Metric Spaces
title_full_unstemmed Sehgal–Guseman-Type Fixed Point Theorem in <i>b</i>-Rectangular Metric Spaces
title_short Sehgal–Guseman-Type Fixed Point Theorem in <i>b</i>-Rectangular Metric Spaces
title_sort sehgal guseman type fixed point theorem in i b i rectangular metric spaces
topic fixed point
<i>b</i>-metric space
rectangular metric space
<i>b</i>-rectangular metric space
url https://www.mdpi.com/2227-7390/9/24/3149
work_keys_str_mv AT dingweizheng sehgalgusemantypefixedpointtheoreminibirectangularmetricspaces
AT guofeiye sehgalgusemantypefixedpointtheoreminibirectangularmetricspaces
AT daweiliu sehgalgusemantypefixedpointtheoreminibirectangularmetricspaces