Scalable and Cooperative Deep Reinforcement Learning Approaches for Multi-UAV Systems: A Systematic Review

In recent years, the use of multiple unmanned aerial vehicles (UAVs) in various applications has progressively increased thanks to advancements in multi-agent system technology, which enables the accomplishment of complex tasks that require cooperative and coordinated abilities. In this article, mul...

Full description

Bibliographic Details
Main Authors: Francesco Frattolillo, Damiano Brunori, Luca Iocchi
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Drones
Subjects:
Online Access:https://www.mdpi.com/2504-446X/7/4/236
Description
Summary:In recent years, the use of multiple unmanned aerial vehicles (UAVs) in various applications has progressively increased thanks to advancements in multi-agent system technology, which enables the accomplishment of complex tasks that require cooperative and coordinated abilities. In this article, multi-UAV applications are grouped into five classes based on their primary task: coverage, adversarial search and game, computational offloading, communication, and target-driven navigation. By employing a systematic review approach, we select the most significant works that use deep reinforcement learning (DRL) techniques for cooperative and scalable multi-UAV systems and discuss their features using extensive and constructive critical reasoning. Finally, we present the most likely and promising research directions by highlighting the limitations of the currently held assumptions and the constraints when dealing with collaborative DRL-based multi-UAV systems. The suggested areas of research can enhance the transfer of knowledge from simulations to real-world environments and can increase the responsiveness and safety of UAV systems.
ISSN:2504-446X