Genetic Engineered Ultrasound-Triggered Injectable Hydrogels for Promoting Bone Reconstruction

Genetic engineering technology can achieve specific gene therapy for a variety of diseases, but the current strategy still has some flaws, such as a complex system, single treatment, and large implantation trauma. Herein, the genetic engineering injectable hydrogels were constructed by ultrasonic te...

Full description

Bibliographic Details
Main Authors: Zhenyu Zhao, Huitong Ruan, Aopan Chen, Wei Xiong, Mingzhu Zhang, Ming Cai, Wenguo Cui
Format: Article
Language:English
Published: American Association for the Advancement of Science (AAAS) 2023-01-01
Series:Research
Online Access:https://spj.science.org/doi/10.34133/research.0221
Description
Summary:Genetic engineering technology can achieve specific gene therapy for a variety of diseases, but the current strategy still has some flaws, such as a complex system, single treatment, and large implantation trauma. Herein, the genetic engineering injectable hydrogels were constructed by ultrasonic technology for the first time to realize in vivo ultrasound-triggered in situ cross-linking and cell gene transfection, and finally complete in situ gene therapy to promote bone reconstruction. First, ultrasound-triggered calcium release was used to activate transglutaminase and catalyze the transamidation between fibrinogen. Simultaneously, liposome loaded with Zinc-finger E-box-binding homeobox 1 (ZEB1) gene plasmid (Lip-ZEB1) was combined to construct an ultrasound-triggered in situ cross-linked hydrogels that can deliver Lip-ZEB1. Second, ultrasound-triggered injectable hydrogel introduced ZEB1 gene plasmid into endothelial cell genome through Lip-ZEB1 sustained release, and then acted on the ZEB1/Notch signal pathway of cells, promoting angiogenesis and local bone reconstruction of osteoporosis through genetic engineering. Overall, this strategy provides an advanced gene delivery system through genetic engineered ultrasound-triggered injectable hydrogels.
ISSN:2639-5274