Ridge Regression and the Elastic Net: How Do They Do as Finders of True Regressors and Their Coefficients?
For the linear model <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Y</mi><mo>=</mo><mi>X</mi><mi>b</mi><mo>+</mo><mi>e</mi><...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-08-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/10/17/3057 |
_version_ | 1797494377524756480 |
---|---|
author | Rajaram Gana |
author_facet | Rajaram Gana |
author_sort | Rajaram Gana |
collection | DOAJ |
description | For the linear model <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Y</mi><mo>=</mo><mi>X</mi><mi>b</mi><mo>+</mo><mi>e</mi><mi>r</mi><mi>r</mi><mi>o</mi><mi>r</mi></mrow></semantics></math></inline-formula>, where the number of regressors (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>p</mi></semantics></math></inline-formula>) exceeds the number of observations (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>n</mi></semantics></math></inline-formula>), the Elastic Net (EN) was proposed, in 2005, to estimate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>b</mi></semantics></math></inline-formula>. The EN uses <i>both</i> the Lasso, proposed in 1996, and ordinary Ridge Regression (RR), proposed in 1970, to estimate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>b</mi></semantics></math></inline-formula>. However, when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>></mo><mi>n</mi></mrow></semantics></math></inline-formula>, using <i>only</i> RR to estimate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>b</mi></semantics></math></inline-formula> has not been considered in the literature thus far. Because RR is based on the least-squares framework, only using RR to estimate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>b</mi></semantics></math></inline-formula> is computationally much simpler than using the EN. We propose a generalized ridge regression (GRR) algorithm, a superior alternative to the EN, for estimating <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>b</mi></semantics></math></inline-formula> as follows: partition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>X</mi></semantics></math></inline-formula> from left to right so that every partition, but the last one, has 3 observations per regressor; for each partition, we estimate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Y</mi></semantics></math></inline-formula> with the regressors in that partition using ordinary RR; retain the regressors with statistically significant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>t</mi></semantics></math></inline-formula>-ratios and the corresponding RR tuning parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>, by partition; use the retained regressors and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula> values to re-estimate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Y</mi></semantics></math></inline-formula> by GRR across all partitions, which yields <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>b</mi></semantics></math></inline-formula>. Algorithmic efficacy is compared using 4 metrics by simulation, because the algorithm is mathematically intractable. Three metrics, with their probabilities of RR’s superiority over EN in parentheses, are: the proportion of true regressors discovered (99%); the squared distance, from the true coefficients, of the significant coefficients (86%); and the squared distance, from the true coefficients, of estimated coefficients that are both significant and true (74%). The fourth metric is the probability that none of the regressors discovered are true, which for RR and EN is 4% and 25%, respectively. This indicates the additional advantage RR has over the EN in terms of discovering causal regressors. |
first_indexed | 2024-03-10T01:33:24Z |
format | Article |
id | doaj.art-3cc162982a3c4ce78f55cf061dd72d9d |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-10T01:33:24Z |
publishDate | 2022-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-3cc162982a3c4ce78f55cf061dd72d9d2023-11-23T13:37:36ZengMDPI AGMathematics2227-73902022-08-011017305710.3390/math10173057Ridge Regression and the Elastic Net: How Do They Do as Finders of True Regressors and Their Coefficients?Rajaram Gana0Department of Biochemistry and Molecular & Cellular Biology, School of Medicine, Georgetown University, Washington, DC 20057, USAFor the linear model <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Y</mi><mo>=</mo><mi>X</mi><mi>b</mi><mo>+</mo><mi>e</mi><mi>r</mi><mi>r</mi><mi>o</mi><mi>r</mi></mrow></semantics></math></inline-formula>, where the number of regressors (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>p</mi></semantics></math></inline-formula>) exceeds the number of observations (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>n</mi></semantics></math></inline-formula>), the Elastic Net (EN) was proposed, in 2005, to estimate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>b</mi></semantics></math></inline-formula>. The EN uses <i>both</i> the Lasso, proposed in 1996, and ordinary Ridge Regression (RR), proposed in 1970, to estimate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>b</mi></semantics></math></inline-formula>. However, when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>></mo><mi>n</mi></mrow></semantics></math></inline-formula>, using <i>only</i> RR to estimate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>b</mi></semantics></math></inline-formula> has not been considered in the literature thus far. Because RR is based on the least-squares framework, only using RR to estimate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>b</mi></semantics></math></inline-formula> is computationally much simpler than using the EN. We propose a generalized ridge regression (GRR) algorithm, a superior alternative to the EN, for estimating <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>b</mi></semantics></math></inline-formula> as follows: partition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>X</mi></semantics></math></inline-formula> from left to right so that every partition, but the last one, has 3 observations per regressor; for each partition, we estimate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Y</mi></semantics></math></inline-formula> with the regressors in that partition using ordinary RR; retain the regressors with statistically significant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>t</mi></semantics></math></inline-formula>-ratios and the corresponding RR tuning parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>, by partition; use the retained regressors and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula> values to re-estimate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Y</mi></semantics></math></inline-formula> by GRR across all partitions, which yields <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>b</mi></semantics></math></inline-formula>. Algorithmic efficacy is compared using 4 metrics by simulation, because the algorithm is mathematically intractable. Three metrics, with their probabilities of RR’s superiority over EN in parentheses, are: the proportion of true regressors discovered (99%); the squared distance, from the true coefficients, of the significant coefficients (86%); and the squared distance, from the true coefficients, of estimated coefficients that are both significant and true (74%). The fourth metric is the probability that none of the regressors discovered are true, which for RR and EN is 4% and 25%, respectively. This indicates the additional advantage RR has over the EN in terms of discovering causal regressors.https://www.mdpi.com/2227-7390/10/17/3057elastic netgeneralized ridge regressionordinary ridge regressionstatistical significance |
spellingShingle | Rajaram Gana Ridge Regression and the Elastic Net: How Do They Do as Finders of True Regressors and Their Coefficients? Mathematics elastic net generalized ridge regression ordinary ridge regression statistical significance |
title | Ridge Regression and the Elastic Net: How Do They Do as Finders of True Regressors and Their Coefficients? |
title_full | Ridge Regression and the Elastic Net: How Do They Do as Finders of True Regressors and Their Coefficients? |
title_fullStr | Ridge Regression and the Elastic Net: How Do They Do as Finders of True Regressors and Their Coefficients? |
title_full_unstemmed | Ridge Regression and the Elastic Net: How Do They Do as Finders of True Regressors and Their Coefficients? |
title_short | Ridge Regression and the Elastic Net: How Do They Do as Finders of True Regressors and Their Coefficients? |
title_sort | ridge regression and the elastic net how do they do as finders of true regressors and their coefficients |
topic | elastic net generalized ridge regression ordinary ridge regression statistical significance |
url | https://www.mdpi.com/2227-7390/10/17/3057 |
work_keys_str_mv | AT rajaramgana ridgeregressionandtheelasticnethowdotheydoasfindersoftrueregressorsandtheircoefficients |