Metabolic network construction reveals probiotic-specific alterations in the metabolic activity of a synthetic small intestinal community

ABSTRACT The gut microbiota plays a crucial role in maintaining overall health and probiotics have emerged as a promising microbiota-targeted therapy for improving human health. However, the molecular mechanisms of probiotics action in general and the targeting of small intestinal microbiota by prob...

Full description

Bibliographic Details
Main Authors: Jack Jansma, Anastasia Chrysovalantou Chatziioannou, Kitty Castricum, Saskia van Hemert, Sahar El Aidy
Format: Article
Language:English
Published: American Society for Microbiology 2023-10-01
Series:mSystems
Subjects:
Online Access:https://journals.asm.org/doi/10.1128/msystems.00332-23
_version_ 1797617633241071616
author Jack Jansma
Anastasia Chrysovalantou Chatziioannou
Kitty Castricum
Saskia van Hemert
Sahar El Aidy
author_facet Jack Jansma
Anastasia Chrysovalantou Chatziioannou
Kitty Castricum
Saskia van Hemert
Sahar El Aidy
author_sort Jack Jansma
collection DOAJ
description ABSTRACT The gut microbiota plays a crucial role in maintaining overall health and probiotics have emerged as a promising microbiota-targeted therapy for improving human health. However, the molecular mechanisms of probiotics action in general and the targeting of small intestinal microbiota by probiotics are not well understood. To address this, we constructed a synthetic community of three species, which resembles the upper small intestinal microbiota. Our results indicate that probiotic supplementation can directly affect the metabolism of the community, resulting in colonization resistance in a probiotic-specific manner. Supplementation with Streptococcus thermophilus led to increased lactate production and a decrease in pH, while Lactobacillus casei supplementation increased the resistance to perturbations and nutrient utilization without affecting lactate production or pH. Additionally, when combined with kynurenine, Lactobacillus casei enhanced the kynurenine pathway metabolism resulting in elevated kynurenic acid levels and possibly indirect colonization resistance. Overall, our study reveals how selecting probiotics with distinct functional capacities can unlock the full potential of microbiota-targeted therapies. IMPORTANCE The development of probiotic therapies targeted at the small intestinal microbiota represents a significant advancement in the field of probiotic interventions. This region poses unique opportunities due to its low number of gut microbiota, along with the presence of heightened immune and metabolic host responses. However, progress in this area has been hindered by a lack of detailed understanding regarding the molecular mechanisms through which probiotics exert their effects in the small intestine. Our study, utilizing a synthetic community of three small intestinal bacterial strains and the addition of two different probiotic species, and kynurenine as a representative dietary or endogenously produced compound, highlights the importance of selecting probiotic species with diverse genetic capabilities that complement the functional capacity of the resident microbiota, or alternatively, constructing a multispecies formula. This approach holds great promise for the development of effective probiotic therapies and underscores the need to consider the functional capacity of probiotic species when designing interventions.
first_indexed 2024-03-11T07:58:36Z
format Article
id doaj.art-3cc32c7d07664d82b26067ea9c832bd1
institution Directory Open Access Journal
issn 2379-5077
language English
last_indexed 2024-03-11T07:58:36Z
publishDate 2023-10-01
publisher American Society for Microbiology
record_format Article
series mSystems
spelling doaj.art-3cc32c7d07664d82b26067ea9c832bd12023-11-17T03:22:37ZengAmerican Society for MicrobiologymSystems2379-50772023-10-018510.1128/msystems.00332-23Metabolic network construction reveals probiotic-specific alterations in the metabolic activity of a synthetic small intestinal communityJack Jansma0Anastasia Chrysovalantou Chatziioannou1Kitty Castricum2Saskia van Hemert3Sahar El Aidy4Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen , Groningen, the NetherlandsHost-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen , Groningen, the NetherlandsWinclove Probiotics , Amsterdam, the NetherlandsWinclove Probiotics , Amsterdam, the NetherlandsHost-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen , Groningen, the NetherlandsABSTRACT The gut microbiota plays a crucial role in maintaining overall health and probiotics have emerged as a promising microbiota-targeted therapy for improving human health. However, the molecular mechanisms of probiotics action in general and the targeting of small intestinal microbiota by probiotics are not well understood. To address this, we constructed a synthetic community of three species, which resembles the upper small intestinal microbiota. Our results indicate that probiotic supplementation can directly affect the metabolism of the community, resulting in colonization resistance in a probiotic-specific manner. Supplementation with Streptococcus thermophilus led to increased lactate production and a decrease in pH, while Lactobacillus casei supplementation increased the resistance to perturbations and nutrient utilization without affecting lactate production or pH. Additionally, when combined with kynurenine, Lactobacillus casei enhanced the kynurenine pathway metabolism resulting in elevated kynurenic acid levels and possibly indirect colonization resistance. Overall, our study reveals how selecting probiotics with distinct functional capacities can unlock the full potential of microbiota-targeted therapies. IMPORTANCE The development of probiotic therapies targeted at the small intestinal microbiota represents a significant advancement in the field of probiotic interventions. This region poses unique opportunities due to its low number of gut microbiota, along with the presence of heightened immune and metabolic host responses. However, progress in this area has been hindered by a lack of detailed understanding regarding the molecular mechanisms through which probiotics exert their effects in the small intestine. Our study, utilizing a synthetic community of three small intestinal bacterial strains and the addition of two different probiotic species, and kynurenine as a representative dietary or endogenously produced compound, highlights the importance of selecting probiotic species with diverse genetic capabilities that complement the functional capacity of the resident microbiota, or alternatively, constructing a multispecies formula. This approach holds great promise for the development of effective probiotic therapies and underscores the need to consider the functional capacity of probiotic species when designing interventions.https://journals.asm.org/doi/10.1128/msystems.00332-23microbiotaprobioticssmall intestinedynamic metabolic networkskynurenic acid
spellingShingle Jack Jansma
Anastasia Chrysovalantou Chatziioannou
Kitty Castricum
Saskia van Hemert
Sahar El Aidy
Metabolic network construction reveals probiotic-specific alterations in the metabolic activity of a synthetic small intestinal community
mSystems
microbiota
probiotics
small intestine
dynamic metabolic networks
kynurenic acid
title Metabolic network construction reveals probiotic-specific alterations in the metabolic activity of a synthetic small intestinal community
title_full Metabolic network construction reveals probiotic-specific alterations in the metabolic activity of a synthetic small intestinal community
title_fullStr Metabolic network construction reveals probiotic-specific alterations in the metabolic activity of a synthetic small intestinal community
title_full_unstemmed Metabolic network construction reveals probiotic-specific alterations in the metabolic activity of a synthetic small intestinal community
title_short Metabolic network construction reveals probiotic-specific alterations in the metabolic activity of a synthetic small intestinal community
title_sort metabolic network construction reveals probiotic specific alterations in the metabolic activity of a synthetic small intestinal community
topic microbiota
probiotics
small intestine
dynamic metabolic networks
kynurenic acid
url https://journals.asm.org/doi/10.1128/msystems.00332-23
work_keys_str_mv AT jackjansma metabolicnetworkconstructionrevealsprobioticspecificalterationsinthemetabolicactivityofasyntheticsmallintestinalcommunity
AT anastasiachrysovalantouchatziioannou metabolicnetworkconstructionrevealsprobioticspecificalterationsinthemetabolicactivityofasyntheticsmallintestinalcommunity
AT kittycastricum metabolicnetworkconstructionrevealsprobioticspecificalterationsinthemetabolicactivityofasyntheticsmallintestinalcommunity
AT saskiavanhemert metabolicnetworkconstructionrevealsprobioticspecificalterationsinthemetabolicactivityofasyntheticsmallintestinalcommunity
AT saharelaidy metabolicnetworkconstructionrevealsprobioticspecificalterationsinthemetabolicactivityofasyntheticsmallintestinalcommunity