Summary: | The gold abundance in basic rocks, which normally varies between 0.5 and 5 ppb, has served as a very important indicator in many geoscience studies, including those focused on the planetary differentiation, redistribution of elements during the crustal process, and ore genesis. However, because gold is a monoisotopic element that exhibits a nugget effect, it is very difficult to quantify its ultra-low levels in rocks, which significantly limits our understanding of the origin of gold and its circulation between the Earth crust, mantle, and core. In this work, we summarize various sample digestion and combined preconcentration methods for the determination of gold amounts in rocks. They include fire assay, fire assay combined with Te coprecipitation and instrumental neutron activation analysis (INAA) or laser ablation inductively coupled plasma mass spectrometry, fusion combined with Te coprecipitation and anion exchange resins, dry chlorination, wet acid digestion combined with precipitation, ion exchange resins, solvent extraction, polyurethane foam, extraction chromatography, novel solid adsorbents, and direct determination by INAA. In addition, the faced challenges and future perspectives in this field are discussed.
|