Toolface Control Method for a Dynamic Point-the-Bit Rotary Steerable Drilling System

In the dynamic point-the-bit rotary steerable system (DPRSS), a high dynamic stiffness toolface control method is desired to ensure the stabilized platform traces the directional command accurately and quickly. A three-loop compound toolface control method using the Model-based Active Disturbance Re...

Full description

Bibliographic Details
Main Authors: Weiliang Wang, Yanfeng Geng, Ning Wang, Xiaojiao Pu, Joice de Oliveira Fiaux
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/10/1831
Description
Summary:In the dynamic point-the-bit rotary steerable system (DPRSS), a high dynamic stiffness toolface control method is desired to ensure the stabilized platform traces the directional command accurately and quickly. A three-loop compound toolface control method using the Model-based Active Disturbance Rejection Control (MADRC) algorithm is presented, and a load torque estimator and an outer housing speed estimator are designed based on system model to obtain the external disturbances. The proposed toolface control method was verified by numerical simulation and DPRSS prototype testing, and its speed loop frequency responses are analyzed. The results reveal that this method is effective in disturbance rejection and robust against parameter uncertainties, and the MADRC shows better performance compared with the conventional ADRC and the proportional-integral (PI) controller. The proposed method has the potential to be used in harsh drilling conditions.
ISSN:1996-1073