Electrode Materials for Supercapacitors in Hybrid Electric Vehicles: Challenges and Current Progress

For hybrid electric vehicles, supercapacitors are an attractive technology which, when used in conjunction with the batteries as a hybrid system, could solve the shortcomings of the battery. Supercapacitors would allow hybrid electric vehicles to achieve high efficiency and better power control. Sup...

Full description

Bibliographic Details
Main Authors: Sivakumar Rajagopal, Rameez Pulapparambil Vallikkattil, M. Mohamed Ibrahim, Dimiter Georgiev Velev
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Condensed Matter
Subjects:
Online Access:https://www.mdpi.com/2410-3896/7/1/6
Description
Summary:For hybrid electric vehicles, supercapacitors are an attractive technology which, when used in conjunction with the batteries as a hybrid system, could solve the shortcomings of the battery. Supercapacitors would allow hybrid electric vehicles to achieve high efficiency and better power control. Supercapacitors possess very good power density. Besides this, their charge-discharge cycling stability and comparatively reasonable cost make them an incredible energy-storing device. The manufacturing strategy and the major parts like electrodes, current collector, binder, separator, and electrolyte define the performance of a supercapacitor. Among these, electrode materials play an important role when it comes to the performance of supercapacitors. They resolve the charge storage in the device and thus decide the capacitance. Porous carbon, conductive polymers, metal hydroxide, and metal oxides, which are some of the usual materials used for the electrodes in the supercapacitors, have some limits when it comes to energy density and stability. Major research in supercapacitors has focused on the design of stable, highly efficient electrodes with low cost. In this review, the most recent electrode materials used in supercapacitors are discussed. The challenges, current progress, and future development of supercapacitors are discussed as well. This study clearly shows that the performance of supercapacitors has increased considerably over the years and this has made them a promising alternative in the energy sector.
ISSN:2410-3896