On the (<i>p</i>, <i>q</i>)–Chebyshev Polynomials and Related Polynomials

In this paper, we introduce <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-form...

Full description

Bibliographic Details
Main Authors: Can Kızılateş, Naim Tuğlu, Bayram Çekim
Format: Article
Language:English
Published: MDPI AG 2019-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/2/136
_version_ 1818291359099912192
author Can Kızılateş
Naim Tuğlu
Bayram Çekim
author_facet Can Kızılateş
Naim Tuğlu
Bayram Çekim
author_sort Can Kızılateş
collection DOAJ
description In this paper, we introduce <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>&#8315;Chebyshev polynomials of the first and second kind that reduces the <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>&#8315;Fibonacci and the <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>&#8315;Lucas polynomials. These polynomials have explicit forms and generating functions are given. Then, derivative properties between these first and second kind polynomials, determinant representations, multilateral and multilinear generating functions are derived.
first_indexed 2024-12-13T02:42:48Z
format Article
id doaj.art-3ceaf244e5ac42ac8bb47c75d2d192fa
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-12-13T02:42:48Z
publishDate 2019-02-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-3ceaf244e5ac42ac8bb47c75d2d192fa2022-12-22T00:02:15ZengMDPI AGMathematics2227-73902019-02-017213610.3390/math7020136math7020136On the (<i>p</i>, <i>q</i>)–Chebyshev Polynomials and Related PolynomialsCan Kızılateş0Naim Tuğlu1Bayram Çekim2Faculty of Art and Science, Department of Mathematics, Zonguldak Bülent Ecevit University, Zonguldak 67100, TurkeyFaculty of Science, Department of Mathematics, Gazi University, Teknikokullar, Ankara 06500, TurkeyFaculty of Science, Department of Mathematics, Gazi University, Teknikokullar, Ankara 06500, TurkeyIn this paper, we introduce <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>&#8315;Chebyshev polynomials of the first and second kind that reduces the <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>&#8315;Fibonacci and the <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>&#8315;Lucas polynomials. These polynomials have explicit forms and generating functions are given. Then, derivative properties between these first and second kind polynomials, determinant representations, multilateral and multilinear generating functions are derived.https://www.mdpi.com/2227-7390/7/2/136(<i>p</i>, <i>q</i>)–Chebyshev polynomials(<i>p</i>, <i>q</i>)–Fibonacci polynomialsmultilateral generating functionsmultilinear generating functions.
spellingShingle Can Kızılateş
Naim Tuğlu
Bayram Çekim
On the (<i>p</i>, <i>q</i>)–Chebyshev Polynomials and Related Polynomials
Mathematics
(<i>p</i>, <i>q</i>)–Chebyshev polynomials
(<i>p</i>, <i>q</i>)–Fibonacci polynomials
multilateral generating functions
multilinear generating functions.
title On the (<i>p</i>, <i>q</i>)–Chebyshev Polynomials and Related Polynomials
title_full On the (<i>p</i>, <i>q</i>)–Chebyshev Polynomials and Related Polynomials
title_fullStr On the (<i>p</i>, <i>q</i>)–Chebyshev Polynomials and Related Polynomials
title_full_unstemmed On the (<i>p</i>, <i>q</i>)–Chebyshev Polynomials and Related Polynomials
title_short On the (<i>p</i>, <i>q</i>)–Chebyshev Polynomials and Related Polynomials
title_sort on the i p i i q i chebyshev polynomials and related polynomials
topic (<i>p</i>, <i>q</i>)–Chebyshev polynomials
(<i>p</i>, <i>q</i>)–Fibonacci polynomials
multilateral generating functions
multilinear generating functions.
url https://www.mdpi.com/2227-7390/7/2/136
work_keys_str_mv AT cankızılates ontheipiiqichebyshevpolynomialsandrelatedpolynomials
AT naimtuglu ontheipiiqichebyshevpolynomialsandrelatedpolynomials
AT bayramcekim ontheipiiqichebyshevpolynomialsandrelatedpolynomials