Discrete uniform limit law for additive functions on shifted primes

The sufficient and necessary conditions for a weak convergence of distributions of a set of strongly additive functions fx , x ⩾ 2, the arguments of which run through shifted primes, to the discrete uniform law are obtained. The case when fx (p) ∈ {0, 1} for every prime pis considered.

Bibliographic Details
Main Authors: Gediminas Stepanauskas, Laura Žvinytė
Format: Article
Language:English
Published: Vilnius University Press 2016-07-01
Series:Nonlinear Analysis
Subjects:
Online Access:http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/13453
_version_ 1818336895424266240
author Gediminas Stepanauskas
Laura Žvinytė
author_facet Gediminas Stepanauskas
Laura Žvinytė
author_sort Gediminas Stepanauskas
collection DOAJ
description The sufficient and necessary conditions for a weak convergence of distributions of a set of strongly additive functions fx , x ⩾ 2, the arguments of which run through shifted primes, to the discrete uniform law are obtained. The case when fx (p) ∈ {0, 1} for every prime pis considered.
first_indexed 2024-12-13T14:46:35Z
format Article
id doaj.art-3cfde0c19c5d4984b826d2f3206eb3d1
institution Directory Open Access Journal
issn 1392-5113
2335-8963
language English
last_indexed 2024-12-13T14:46:35Z
publishDate 2016-07-01
publisher Vilnius University Press
record_format Article
series Nonlinear Analysis
spelling doaj.art-3cfde0c19c5d4984b826d2f3206eb3d12022-12-21T23:41:27ZengVilnius University PressNonlinear Analysis1392-51132335-89632016-07-0121410.15388/NA.2016.4.1Discrete uniform limit law for additive functions on shifted primesGediminas Stepanauskas0Laura Žvinytė1Vilnius UniversityVilnius UniversityThe sufficient and necessary conditions for a weak convergence of distributions of a set of strongly additive functions fx , x ⩾ 2, the arguments of which run through shifted primes, to the discrete uniform law are obtained. The case when fx (p) ∈ {0, 1} for every prime pis considered.http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/13453additive functiondiscrete uniform lawfrequencyweak convergence
spellingShingle Gediminas Stepanauskas
Laura Žvinytė
Discrete uniform limit law for additive functions on shifted primes
Nonlinear Analysis
additive function
discrete uniform law
frequency
weak convergence
title Discrete uniform limit law for additive functions on shifted primes
title_full Discrete uniform limit law for additive functions on shifted primes
title_fullStr Discrete uniform limit law for additive functions on shifted primes
title_full_unstemmed Discrete uniform limit law for additive functions on shifted primes
title_short Discrete uniform limit law for additive functions on shifted primes
title_sort discrete uniform limit law for additive functions on shifted primes
topic additive function
discrete uniform law
frequency
weak convergence
url http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/13453
work_keys_str_mv AT gediminasstepanauskas discreteuniformlimitlawforadditivefunctionsonshiftedprimes
AT laurazvinyte discreteuniformlimitlawforadditivefunctionsonshiftedprimes