Variance The Estimation Eigen Value of Principal Component Analysis and Nonlinear Principal Component Analysis

Nonlinear Principal Component Analysis (PRINCALS) is an extension of Principal Component Analysis (Linear), which can reduce the variables of mixed scale multivariable data (nominal, ordinal, interval, and ratio) simultaneously. This study investigated variance the estimation eigen value of Principa...

Full description

Bibliographic Details
Main Authors: Makkulau, Tenri Ampa Andi, Yahya Irma, La Ome Lilis, Saidi La Ode
Format: Article
Language:English
Published: EDP Sciences 2024-01-01
Series:ITM Web of Conferences
Online Access:https://www.itm-conferences.org/articles/itmconf/pdf/2024/01/itmconf_iicma2024_04001.pdf
_version_ 1827372010253058048
author Makkulau
Tenri Ampa Andi
Yahya Irma
La Ome Lilis
Saidi La Ode
author_facet Makkulau
Tenri Ampa Andi
Yahya Irma
La Ome Lilis
Saidi La Ode
author_sort Makkulau
collection DOAJ
description Nonlinear Principal Component Analysis (PRINCALS) is an extension of Principal Component Analysis (Linear), which can reduce the variables of mixed scale multivariable data (nominal, ordinal, interval, and ratio) simultaneously. This study investigated variance the estimation eigen value of Principal Component Analysis Linear and Nonlinear. The result showed that variance the estimation eigen value of Principal Component Analysis is Var( λ ^ ˜ S )= H S ′ V S H S $ {\rm Var}({\tilde{\hat{\lambda}}}_{S})=\mathbf H_{S}^{\prime}\mathbf V_{S}\mathbf H_{S} $ and variance the estimation eigen value of Nonlinear Principal Component Analysis is Var( λ ^ R )= H R ′ V R H R $ {\rm Var}({{\hat{\lambda}}}_{R})=\mathbf H_{R}^{\prime}\mathbf V_{R}\mathbf H_{R} $ Variance the estimation eigen value of Nonlinear Principal Component Analysis better (efficient) than variance the estimation eigen value of Principal Component Analysis.
first_indexed 2024-03-08T10:50:10Z
format Article
id doaj.art-3d032ca850ba439a965c505e877eefdc
institution Directory Open Access Journal
issn 2271-2097
language English
last_indexed 2024-03-08T10:50:10Z
publishDate 2024-01-01
publisher EDP Sciences
record_format Article
series ITM Web of Conferences
spelling doaj.art-3d032ca850ba439a965c505e877eefdc2024-01-26T16:47:48ZengEDP SciencesITM Web of Conferences2271-20972024-01-01580400110.1051/itmconf/20245804001itmconf_iicma2024_04001Variance The Estimation Eigen Value of Principal Component Analysis and Nonlinear Principal Component AnalysisMakkulau0Tenri Ampa Andi1Yahya Irma2La Ome Lilis3Saidi La Ode4Faculty of Mathematics and Natural Sciences, Universitas of Halu OleoFaculty of Mathematics and Natural Sciences, Universitas of Halu OleoFaculty of Mathematics and Natural Sciences, Universitas of Halu OleoFaculty of Mathematics and Natural Sciences, Universitas of Halu OleoFaculty of Mathematics and Natural Sciences, Universitas of Halu Oleo, Computer Science DepartmentNonlinear Principal Component Analysis (PRINCALS) is an extension of Principal Component Analysis (Linear), which can reduce the variables of mixed scale multivariable data (nominal, ordinal, interval, and ratio) simultaneously. This study investigated variance the estimation eigen value of Principal Component Analysis Linear and Nonlinear. The result showed that variance the estimation eigen value of Principal Component Analysis is Var( λ ^ ˜ S )= H S ′ V S H S $ {\rm Var}({\tilde{\hat{\lambda}}}_{S})=\mathbf H_{S}^{\prime}\mathbf V_{S}\mathbf H_{S} $ and variance the estimation eigen value of Nonlinear Principal Component Analysis is Var( λ ^ R )= H R ′ V R H R $ {\rm Var}({{\hat{\lambda}}}_{R})=\mathbf H_{R}^{\prime}\mathbf V_{R}\mathbf H_{R} $ Variance the estimation eigen value of Nonlinear Principal Component Analysis better (efficient) than variance the estimation eigen value of Principal Component Analysis.https://www.itm-conferences.org/articles/itmconf/pdf/2024/01/itmconf_iicma2024_04001.pdf
spellingShingle Makkulau
Tenri Ampa Andi
Yahya Irma
La Ome Lilis
Saidi La Ode
Variance The Estimation Eigen Value of Principal Component Analysis and Nonlinear Principal Component Analysis
ITM Web of Conferences
title Variance The Estimation Eigen Value of Principal Component Analysis and Nonlinear Principal Component Analysis
title_full Variance The Estimation Eigen Value of Principal Component Analysis and Nonlinear Principal Component Analysis
title_fullStr Variance The Estimation Eigen Value of Principal Component Analysis and Nonlinear Principal Component Analysis
title_full_unstemmed Variance The Estimation Eigen Value of Principal Component Analysis and Nonlinear Principal Component Analysis
title_short Variance The Estimation Eigen Value of Principal Component Analysis and Nonlinear Principal Component Analysis
title_sort variance the estimation eigen value of principal component analysis and nonlinear principal component analysis
url https://www.itm-conferences.org/articles/itmconf/pdf/2024/01/itmconf_iicma2024_04001.pdf
work_keys_str_mv AT makkulau variancetheestimationeigenvalueofprincipalcomponentanalysisandnonlinearprincipalcomponentanalysis
AT tenriampaandi variancetheestimationeigenvalueofprincipalcomponentanalysisandnonlinearprincipalcomponentanalysis
AT yahyairma variancetheestimationeigenvalueofprincipalcomponentanalysisandnonlinearprincipalcomponentanalysis
AT laomelilis variancetheestimationeigenvalueofprincipalcomponentanalysisandnonlinearprincipalcomponentanalysis
AT saidilaode variancetheestimationeigenvalueofprincipalcomponentanalysisandnonlinearprincipalcomponentanalysis