Dynamic Stability Improvement of Power System by Means of STATCOM With Virtual Inertia

The paper investigates the application of Static Synchronous Compensator (STATCOM) with synchronverter control to enhance dynamic stability. Synchronverter is a control strategy for voltage source converters that emulates a synchronous generator, therefore providing virtual inertia. A thorough analy...

Full description

Bibliographic Details
Main Authors: Lavr Vetoshkin, Zdenek Muller
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9517090/
Description
Summary:The paper investigates the application of Static Synchronous Compensator (STATCOM) with synchronverter control to enhance dynamic stability. Synchronverter is a control strategy for voltage source converters that emulates a synchronous generator, therefore providing virtual inertia. A thorough analysis of system stability with STATCOM controlled using synchronverter is presented. Furthermore, a comparison to vector control is provided. The analysis was conducted for a commonly known Single Machine Infinite Bus (SMIB) test case. The authors also compare the synchronverter and vector control performance using different mathematical tools such as eigenvalue analysis, numerical simulation, and lyapunov theory. Synchronverter algorithm improves the damping of the system, as small-signal analysis shows. The results of numerical simulations demonstrate the improvement of dynamic stability. Besides, the stability region also improves in the case of synchronverter. Finally, the paper demonstrates on the IEEE 39 bus system that the operation of STATCOM with a synchronverter control strategy is feasible and improves dynamic stability. Synchronverter brings the advantages of artificially adding inertia to the system, an essential issue in modern power systems.
ISSN:2169-3536