Influence of Impermeable Elevated Bottom on the Wave Scattering due to Multiple Porous Structures
The significance of multiple porous structures with finite spacing upon elevated seabed in the presence and absence of the leeward wall is examined under oblique wave impinging. Fluid propagation is assumed over the impermeable elevated bottom, and the fluid realm is separated into open water and po...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Isfahan University of Technology
2020-01-01
|
Series: | Journal of Applied Fluid Mechanics |
Subjects: | |
Online Access: | http://jafmonline.net/JournalArchive/download?file_ID=50996&issue_ID=1004 |
_version_ | 1811321903982313472 |
---|---|
author | V. Venkateswarlu D. Karmakar |
author_facet | V. Venkateswarlu D. Karmakar |
author_sort | V. Venkateswarlu |
collection | DOAJ |
description | The significance of multiple porous structures with finite spacing upon elevated seabed in the presence and absence of the leeward wall is examined under oblique wave impinging. Fluid propagation is assumed over the impermeable elevated bottom, and the fluid realm is separated into open water and porous structure regions. Continuity of the dynamic pressure and mass fluxes at the interfaces of the porous structure and the open water regions are adopted. The resistance and reactance due to the presence of the porous structure are taken into account using the porous structure dispersion relation. The numerical model is developed based on the eigenfunction expansion method along with matched velocity potentials at the interfaces of open water and the porous block regions. The wave reflection and transmission characteristics, energy damping and wave force impact on the leeward wall is analysed. The significance of the porosity, structural width, angle of incidence, width between the two structures and water chamber length is studied considering multiple porous blocks with finite spacing under oblique wave impinging in the presence and absence of leeward wall. The numerical results obtained in the present study agrees well with the theoretical and experimental results available in the literature. The present study illustrates that, with the increase in the number of porous blocks and gap between the porous blocks, the resonating trend is observed in the wave transformation and the influence of the elevated step height is revealed for the wave trapping. |
first_indexed | 2024-04-13T13:25:57Z |
format | Article |
id | doaj.art-3d0976a935d748988bee66b0b4f30928 |
institution | Directory Open Access Journal |
issn | 1735-3572 |
language | English |
last_indexed | 2024-04-13T13:25:57Z |
publishDate | 2020-01-01 |
publisher | Isfahan University of Technology |
record_format | Article |
series | Journal of Applied Fluid Mechanics |
spelling | doaj.art-3d0976a935d748988bee66b0b4f309282022-12-22T02:45:07ZengIsfahan University of TechnologyJournal of Applied Fluid Mechanics1735-35722020-01-01131371385.Influence of Impermeable Elevated Bottom on the Wave Scattering due to Multiple Porous StructuresV. Venkateswarlu0D. Karmakar1Department of Applied Mechanics and Hydraulics National Institute of Technology Karnataka, Surathkal, Mangalore – 575025, IndiaDepartment of Applied Mechanics and Hydraulics National Institute of Technology Karnataka, Surathkal, Mangalore – 575025, IndiaThe significance of multiple porous structures with finite spacing upon elevated seabed in the presence and absence of the leeward wall is examined under oblique wave impinging. Fluid propagation is assumed over the impermeable elevated bottom, and the fluid realm is separated into open water and porous structure regions. Continuity of the dynamic pressure and mass fluxes at the interfaces of the porous structure and the open water regions are adopted. The resistance and reactance due to the presence of the porous structure are taken into account using the porous structure dispersion relation. The numerical model is developed based on the eigenfunction expansion method along with matched velocity potentials at the interfaces of open water and the porous block regions. The wave reflection and transmission characteristics, energy damping and wave force impact on the leeward wall is analysed. The significance of the porosity, structural width, angle of incidence, width between the two structures and water chamber length is studied considering multiple porous blocks with finite spacing under oblique wave impinging in the presence and absence of leeward wall. The numerical results obtained in the present study agrees well with the theoretical and experimental results available in the literature. The present study illustrates that, with the increase in the number of porous blocks and gap between the porous blocks, the resonating trend is observed in the wave transformation and the influence of the elevated step height is revealed for the wave trapping.http://jafmonline.net/JournalArchive/download?file_ID=50996&issue_ID=1004Multiple porous structures; Energy damping; Impermeable elevated bottom; Eigenfunction expansion method; Wave transformation. |
spellingShingle | V. Venkateswarlu D. Karmakar Influence of Impermeable Elevated Bottom on the Wave Scattering due to Multiple Porous Structures Journal of Applied Fluid Mechanics Multiple porous structures; Energy damping; Impermeable elevated bottom; Eigenfunction expansion method; Wave transformation. |
title | Influence of Impermeable Elevated Bottom on the Wave Scattering due to Multiple Porous Structures |
title_full | Influence of Impermeable Elevated Bottom on the Wave Scattering due to Multiple Porous Structures |
title_fullStr | Influence of Impermeable Elevated Bottom on the Wave Scattering due to Multiple Porous Structures |
title_full_unstemmed | Influence of Impermeable Elevated Bottom on the Wave Scattering due to Multiple Porous Structures |
title_short | Influence of Impermeable Elevated Bottom on the Wave Scattering due to Multiple Porous Structures |
title_sort | influence of impermeable elevated bottom on the wave scattering due to multiple porous structures |
topic | Multiple porous structures; Energy damping; Impermeable elevated bottom; Eigenfunction expansion method; Wave transformation. |
url | http://jafmonline.net/JournalArchive/download?file_ID=50996&issue_ID=1004 |
work_keys_str_mv | AT vvenkateswarlu influenceofimpermeableelevatedbottomonthewavescatteringduetomultipleporousstructures AT dkarmakar influenceofimpermeableelevatedbottomonthewavescatteringduetomultipleporousstructures |