Alternative stopping rules to limit tree expansion for random forest models

Abstract Random forests are a popular type of machine learning model, which are relatively robust to overfitting, unlike some other machine learning models, and adequately capture non-linear relationships between an outcome of interest and multiple independent variables. There are relatively few adj...

Celý popis

Podrobná bibliografie
Hlavní autoři: Mark P. Little, Philip S. Rosenberg, Aryana Arsham
Médium: Článek
Jazyk:English
Vydáno: Nature Portfolio 2022-09-01
Edice:Scientific Reports
On-line přístup:https://doi.org/10.1038/s41598-022-19281-7