All N $$ \mathcal{N} $$ = (8, 0) AdS3 solutions in 10 and 11 dimensions

Abstract We classify AdS3 solutions preserving N $$ \mathcal{N} $$ = (8, 0) supersymmetry in ten and eleven dimensions and find the local form of each of them. These include the AdS3×S6 solution of [1] and the embeddings of AdS3 into AdS4×S7, AdS5×S5, AdS7 /ℤ k ×S4 and its IIA reduction within AdS7....

Full description

Bibliographic Details
Main Authors: Andrea Legramandi, Gabriele Lo Monaco, Niall T. Macpherson
Format: Article
Language:English
Published: SpringerOpen 2021-05-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP05(2021)263
_version_ 1819092122771390464
author Andrea Legramandi
Gabriele Lo Monaco
Niall T. Macpherson
author_facet Andrea Legramandi
Gabriele Lo Monaco
Niall T. Macpherson
author_sort Andrea Legramandi
collection DOAJ
description Abstract We classify AdS3 solutions preserving N $$ \mathcal{N} $$ = (8, 0) supersymmetry in ten and eleven dimensions and find the local form of each of them. These include the AdS3×S6 solution of [1] and the embeddings of AdS3 into AdS4×S7, AdS5×S5, AdS7 /ℤ k ×S4 and its IIA reduction within AdS7. More interestingly we find solutions preserving the superconformal algebras f 4 , su 1 1 4 , osp 4 ∗ 4 $$ {\mathfrak{f}}_4,\mathfrak{su}\left(1,1|4\right),\mathfrak{osp}\left({4}^{\ast }|4\right) $$ on certain squashings of the 7-sphere. These solutions asymptote to AdS4×S7 and are promising candidates for holographic duals to defects in Chern-Simons matter theories.
first_indexed 2024-12-21T22:50:36Z
format Article
id doaj.art-3d131580dca1420a82591fc7da687b30
institution Directory Open Access Journal
issn 1029-8479
language English
last_indexed 2024-12-21T22:50:36Z
publishDate 2021-05-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj.art-3d131580dca1420a82591fc7da687b302022-12-21T18:47:35ZengSpringerOpenJournal of High Energy Physics1029-84792021-05-012021516010.1007/JHEP05(2021)263All N $$ \mathcal{N} $$ = (8, 0) AdS3 solutions in 10 and 11 dimensionsAndrea Legramandi0Gabriele Lo Monaco1Niall T. Macpherson2Dipartimento di Fisica, Università di Milano-Bicocca, and INFN, sezione di Milano-BicoccaDepartment of Physics, Stockholm University, AlbaNovaInternational Institute of Physics, Universidade Federal do Rio Grande do NorteAbstract We classify AdS3 solutions preserving N $$ \mathcal{N} $$ = (8, 0) supersymmetry in ten and eleven dimensions and find the local form of each of them. These include the AdS3×S6 solution of [1] and the embeddings of AdS3 into AdS4×S7, AdS5×S5, AdS7 /ℤ k ×S4 and its IIA reduction within AdS7. More interestingly we find solutions preserving the superconformal algebras f 4 , su 1 1 4 , osp 4 ∗ 4 $$ {\mathfrak{f}}_4,\mathfrak{su}\left(1,1|4\right),\mathfrak{osp}\left({4}^{\ast }|4\right) $$ on certain squashings of the 7-sphere. These solutions asymptote to AdS4×S7 and are promising candidates for holographic duals to defects in Chern-Simons matter theories.https://doi.org/10.1007/JHEP05(2021)263Extended SupersymmetrySuperstring VacuaAdS-CFT Correspondence
spellingShingle Andrea Legramandi
Gabriele Lo Monaco
Niall T. Macpherson
All N $$ \mathcal{N} $$ = (8, 0) AdS3 solutions in 10 and 11 dimensions
Journal of High Energy Physics
Extended Supersymmetry
Superstring Vacua
AdS-CFT Correspondence
title All N $$ \mathcal{N} $$ = (8, 0) AdS3 solutions in 10 and 11 dimensions
title_full All N $$ \mathcal{N} $$ = (8, 0) AdS3 solutions in 10 and 11 dimensions
title_fullStr All N $$ \mathcal{N} $$ = (8, 0) AdS3 solutions in 10 and 11 dimensions
title_full_unstemmed All N $$ \mathcal{N} $$ = (8, 0) AdS3 solutions in 10 and 11 dimensions
title_short All N $$ \mathcal{N} $$ = (8, 0) AdS3 solutions in 10 and 11 dimensions
title_sort all n mathcal n 8 0 ads3 solutions in 10 and 11 dimensions
topic Extended Supersymmetry
Superstring Vacua
AdS-CFT Correspondence
url https://doi.org/10.1007/JHEP05(2021)263
work_keys_str_mv AT andrealegramandi allnmathcaln80ads3solutionsin10and11dimensions
AT gabrielelomonaco allnmathcaln80ads3solutionsin10and11dimensions
AT nialltmacpherson allnmathcaln80ads3solutionsin10and11dimensions