OPTIMASI FUNGSI MULTI-OBYEKTIF BERKENDALA MENGGUNAKAN ALGORITMA GENETIKA ADAPTIF DENGAN PENGKODEAN REAL

Multi-objective optimization problem is difficult to be solved as its objectives generally conflict with each other and its solution is not in the form of a single solution but a set of solutions. Genetic algorithms (GAs) is one of meta heuristic algorithms that may be used to solve this problem. H...

Full description

Bibliographic Details
Main Authors: Wayan Firdaus Mahmudy, Muh. Arif Rahman
Format: Article
Language:English
Published: Informatics Department, Engineering Faculty 2011-01-01
Series:Jurnal Ilmiah Kursor: Menuju Solusi Teknologi Informasi
Subjects:
Online Access:https://kursorjournal.org/index.php/kursor/article/view/28
_version_ 1797743844691804160
author Wayan Firdaus Mahmudy
Muh. Arif Rahman
author_facet Wayan Firdaus Mahmudy
Muh. Arif Rahman
author_sort Wayan Firdaus Mahmudy
collection DOAJ
description Multi-objective optimization problem is difficult to be solved as its objectives generally conflict with each other and its solution is not in the form of a single solution but a set of solutions. Genetic algorithms (GAs) is one of meta heuristic algorithms that may be used to solve this problem. However, a standard GAs is easily trapped in local optimum areas and searching process rate will be lower around the optimum points. This paper proposes a GAs with an adaptive mutation rate to balance the exploration and exploitation on the search space. A simple rule has been developed to determine wheter the mutation rate is increased or decreased. If a significant improvment of the fitness value is not achieved, the mutation rate is increased to enable the GAs exploring search space and escaping the local optimum area. In contrast, the mutation rate is decreased if significant improvment of the fitness value is achieved. This mechanism guide the GAs to exploit the local search area. The experiments show that by using the adaptive mutation, the GAs will move faster toward a feasible search space and achieving solutions on sorter time.
first_indexed 2024-03-12T15:02:21Z
format Article
id doaj.art-3d222e2d0c554b73b63e946b0d887893
institution Directory Open Access Journal
issn 0216-0544
2301-6914
language English
last_indexed 2024-03-12T15:02:21Z
publishDate 2011-01-01
publisher Informatics Department, Engineering Faculty
record_format Article
series Jurnal Ilmiah Kursor: Menuju Solusi Teknologi Informasi
spelling doaj.art-3d222e2d0c554b73b63e946b0d8878932023-08-13T20:43:04ZengInformatics Department, Engineering FacultyJurnal Ilmiah Kursor: Menuju Solusi Teknologi Informasi0216-05442301-69142011-01-0161OPTIMASI FUNGSI MULTI-OBYEKTIF BERKENDALA MENGGUNAKAN ALGORITMA GENETIKA ADAPTIF DENGAN PENGKODEAN REALWayan Firdaus Mahmudy0Muh. Arif Rahman1Program Studi Ilmu Komputer, Universitas BrawijayaProgram Studi Ilmu Komputer, Universitas Brawijaya Multi-objective optimization problem is difficult to be solved as its objectives generally conflict with each other and its solution is not in the form of a single solution but a set of solutions. Genetic algorithms (GAs) is one of meta heuristic algorithms that may be used to solve this problem. However, a standard GAs is easily trapped in local optimum areas and searching process rate will be lower around the optimum points. This paper proposes a GAs with an adaptive mutation rate to balance the exploration and exploitation on the search space. A simple rule has been developed to determine wheter the mutation rate is increased or decreased. If a significant improvment of the fitness value is not achieved, the mutation rate is increased to enable the GAs exploring search space and escaping the local optimum area. In contrast, the mutation rate is decreased if significant improvment of the fitness value is achieved. This mechanism guide the GAs to exploit the local search area. The experiments show that by using the adaptive mutation, the GAs will move faster toward a feasible search space and achieving solutions on sorter time. https://kursorjournal.org/index.php/kursor/article/view/28multi-objective optimizationgenetic algorithmsadaptive mutation
spellingShingle Wayan Firdaus Mahmudy
Muh. Arif Rahman
OPTIMASI FUNGSI MULTI-OBYEKTIF BERKENDALA MENGGUNAKAN ALGORITMA GENETIKA ADAPTIF DENGAN PENGKODEAN REAL
Jurnal Ilmiah Kursor: Menuju Solusi Teknologi Informasi
multi-objective optimization
genetic algorithms
adaptive mutation
title OPTIMASI FUNGSI MULTI-OBYEKTIF BERKENDALA MENGGUNAKAN ALGORITMA GENETIKA ADAPTIF DENGAN PENGKODEAN REAL
title_full OPTIMASI FUNGSI MULTI-OBYEKTIF BERKENDALA MENGGUNAKAN ALGORITMA GENETIKA ADAPTIF DENGAN PENGKODEAN REAL
title_fullStr OPTIMASI FUNGSI MULTI-OBYEKTIF BERKENDALA MENGGUNAKAN ALGORITMA GENETIKA ADAPTIF DENGAN PENGKODEAN REAL
title_full_unstemmed OPTIMASI FUNGSI MULTI-OBYEKTIF BERKENDALA MENGGUNAKAN ALGORITMA GENETIKA ADAPTIF DENGAN PENGKODEAN REAL
title_short OPTIMASI FUNGSI MULTI-OBYEKTIF BERKENDALA MENGGUNAKAN ALGORITMA GENETIKA ADAPTIF DENGAN PENGKODEAN REAL
title_sort optimasi fungsi multi obyektif berkendala menggunakan algoritma genetika adaptif dengan pengkodean real
topic multi-objective optimization
genetic algorithms
adaptive mutation
url https://kursorjournal.org/index.php/kursor/article/view/28
work_keys_str_mv AT wayanfirdausmahmudy optimasifungsimultiobyektifberkendalamenggunakanalgoritmagenetikaadaptifdenganpengkodeanreal
AT muharifrahman optimasifungsimultiobyektifberkendalamenggunakanalgoritmagenetikaadaptifdenganpengkodeanreal