Performance Analysis for the Anaerobic Membrane Bioreactor Combined with the Forward Osmosis Membrane Bioreactor: Process Conditions Optimization, Wastewater Treatment and Sludge Characteristics

The anaerobic membrane bioreactors (AnMBR) were operated at 35 °C (H-AnMBR) and 25 °C (L-AnMBR) for long-term wastewater treatment. Two aerobic forward osmosis membrane bioreactors (FOMBRs) were utilized to treat the effluents of H-AnMBR and L-AnMBR, respectively. During the 180 days of operation, i...

Full description

Bibliographic Details
Main Authors: Yi Ding, Zhansheng Guo, Xuguang Hou, Junxue Mei, Zhenlin Liang, Zhipeng Li, Chunpeng Zhang, Chao Jin
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/12/11/2958
Description
Summary:The anaerobic membrane bioreactors (AnMBR) were operated at 35 °C (H-AnMBR) and 25 °C (L-AnMBR) for long-term wastewater treatment. Two aerobic forward osmosis membrane bioreactors (FOMBRs) were utilized to treat the effluents of H-AnMBR and L-AnMBR, respectively. During the 180 days of operation, it is worth noting that the combined system was feasible, and the pollutant removal efficiency was higher. Though the permeate chemical oxygen demand (COD) of H-AnMBR (18.94 mg/L) was obviously lower than that of L-AnMBR (51.09 mg/L), the permeate CODs of the FOMBRs were almost the same with the average concentrations of 7.57 and 7.58 mg/L for the H-FOMBR and L-FOMBR, respectively. It was interesting that for both the AnMBRs, the permeate total nitrogen (TN) concentration was higher than that in bulk phase. However, the TN concentrations in the effluent remained stable with the values of 20.12 and 15.22 mg/L in the H-FOMBR and L-FOMBR effluents, respectively. For the two systems, the characteristics of activated sludge flocs were different for H-AnMBR-FOMBR sludge and L-AnMBR-FOMBR sludge. The viscosity of L-AnMBR-activated sludge (2.09 Pa·s) was higher compared to that of H-AnMBR (1.31 Pa·s), while the viscosity of activated sludge in L-FOMBR (1.44 Pa·s) was a little lower than that in H-FOMBR (1.48 Pa·s). The capillary water absorption time of L-AnMBR-activated sludge (69.6 s) was higher compared to that of H-AnMBR (49.5 s), while the capillary water absorption time of activated sludge in L-FOMBR (14.6 s) was little lower than that in H-FOMBR (15.6 s). The particle size of H-AnMBR-activated sludge (119.62 nm) was larger than that of L-AnMBR-activated sludge (84.92 nm), but the particle size of H-FOMBR-activated sludge (143.81 nm) was significantly smaller than that of L-FOMBR-activated sludge (293.38 nm). The observations of flocs indicated that the flocs of activated sludge in H-AnMBR were relatively loose, while the flocs of L-AnMBR were relatively tight. The fine sludge floc was less present in the L-FOMBR than in the H-FOMBR. Therefore, in the process of sewage treatment, the influent of each unit in the AnMBR-FOMBR system should have suitable organic content to maintain the particle sizes of sludge flocs.
ISSN:2073-4441