MINIMAL LEARNING MACHINE IN ANOMALY DETECTION FROM HYPERSPECTRAL IMAGES
Anomaly detection from hyperspectral data needs computationally efficient methods to process the data when the data gathering platform is a drone or a cube satellite. In this study, we introduce a minimal learning machine for hyperspectral anomaly detection. Minimal learning machine is a novel dista...
Prif Awduron: | I. Pölönen, K. Riihiaho, A.-M. Hakola, L. Annala |
---|---|
Fformat: | Erthygl |
Iaith: | English |
Cyhoeddwyd: |
Copernicus Publications
2020-08-01
|
Cyfres: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Mynediad Ar-lein: | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/467/2020/isprs-archives-XLIII-B3-2020-467-2020.pdf |
Eitemau Tebyg
-
PIECEWISE ANOMALY DETECTION USING MINIMAL LEARNING MACHINE FOR HYPERSPECTRAL IMAGES
gan: A.-M. Raita-Hakola, et al.
Cyhoeddwyd: (2021-06-01) -
A Do-It-Yourself Hyperspectral Imager Brought to Practice with Open-Source Python
gan: Kimmo Aukusti Riihiaho, et al.
Cyhoeddwyd: (2021-02-01) -
PRACTICAL APPROACH FOR HYPERSPECTRAL IMAGE PROCESSING IN PYTHON
gan: L. Annala, et al.
Cyhoeddwyd: (2018-04-01) -
FPI Based Hyperspectral Imager for the Complex Surfaces—Calibration, Illumination and Applications
gan: Anna-Maria Raita-Hakola, et al.
Cyhoeddwyd: (2022-04-01) -
Hyperspectral Anomaly Detection Based on Machine Learning: An Overview
gan: Yichu Xu, et al.
Cyhoeddwyd: (2022-01-01)