MINIMAL LEARNING MACHINE IN ANOMALY DETECTION FROM HYPERSPECTRAL IMAGES

Anomaly detection from hyperspectral data needs computationally efficient methods to process the data when the data gathering platform is a drone or a cube satellite. In this study, we introduce a minimal learning machine for hyperspectral anomaly detection. Minimal learning machine is a novel dista...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsmän: I. Pölönen, K. Riihiaho, A.-M. Hakola, L. Annala
Materialtyp: Artikel
Språk:English
Publicerad: Copernicus Publications 2020-08-01
Serie:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Länkar:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/467/2020/isprs-archives-XLIII-B3-2020-467-2020.pdf