Field-enhanced magnetic moment in ellipsoidal nano-hematite

Bulk hematite is a canted antiferromagnet at room temperature and displays weak magnetic coercivity above the Morin transition temperature T _M  ∼ 262 K. Below T _M , hematite displays traditional antiferromagnetic behavior, with no net magnetic moment or magnetic hysteresis. Here, we report that el...

Full description

Bibliographic Details
Main Authors: Vikash Malik, Somaditya Sen, David R Gelting, Marija Gajdardziska-Josifovska, Marius Schmidt, Prasenjit Guptasarma
Format: Article
Language:English
Published: IOP Publishing 2014-01-01
Series:Materials Research Express
Subjects:
Online Access:https://doi.org/10.1088/2053-1591/1/2/026114
_version_ 1827869694467506176
author Vikash Malik
Somaditya Sen
David R Gelting
Marija Gajdardziska-Josifovska
Marius Schmidt
Prasenjit Guptasarma
author_facet Vikash Malik
Somaditya Sen
David R Gelting
Marija Gajdardziska-Josifovska
Marius Schmidt
Prasenjit Guptasarma
author_sort Vikash Malik
collection DOAJ
description Bulk hematite is a canted antiferromagnet at room temperature and displays weak magnetic coercivity above the Morin transition temperature T _M  ∼ 262 K. Below T _M , hematite displays traditional antiferromagnetic behavior, with no net magnetic moment or magnetic hysteresis. Here, we report that ellipsoidal nanocrystals of hematite (ENH) display a significant field-enhanced magnetic moment (FEMM) upon being poled by a magnetic field. This poled moment displays a giant coercive field of nearly 6000 Oe at low temperature. Atomic resolution transmission electron microscopy indicates that the nanocrystals are single crystalline, and that the surfaces are bulk-terminated. The apical terminations include the <001> sets of planes, which are implicated in possible formation of FM-arrangements near the surface. We tentatively suggest that FEMM in ENH could also arise from uncompensated surface spins or a shell of ordered spins oriented and pinned near the surface by a magnetic field. The gradual loss of magnetic moment with increasing temperature could arise as a result of competition between surface pinning energy, and kT. The large coercive field points toward possible applications for ENH in digital magnetic recording.
first_indexed 2024-03-12T15:47:45Z
format Article
id doaj.art-3d3f7c5f7ccd4cf88e590faea2f55be6
institution Directory Open Access Journal
issn 2053-1591
language English
last_indexed 2024-03-12T15:47:45Z
publishDate 2014-01-01
publisher IOP Publishing
record_format Article
series Materials Research Express
spelling doaj.art-3d3f7c5f7ccd4cf88e590faea2f55be62023-08-09T15:20:09ZengIOP PublishingMaterials Research Express2053-15912014-01-011202611410.1088/2053-1591/1/2/026114Field-enhanced magnetic moment in ellipsoidal nano-hematiteVikash Malik0Somaditya Sen1David R Gelting2Marija Gajdardziska-Josifovska3Marius Schmidt4Prasenjit Guptasarma5Physics Department, University of Wisconsin Milwaukee , 1900 E. Kenwood Blvd Milwaukee-WI 53211, USAPhysics Department, University of Wisconsin Milwaukee , 1900 E. Kenwood Blvd Milwaukee-WI 53211, USAPhysics Department, University of Wisconsin Milwaukee , 1900 E. Kenwood Blvd Milwaukee-WI 53211, USAPhysics Department, University of Wisconsin Milwaukee , 1900 E. Kenwood Blvd Milwaukee-WI 53211, USAPhysics Department, University of Wisconsin Milwaukee , 1900 E. Kenwood Blvd Milwaukee-WI 53211, USAPhysics Department, University of Wisconsin Milwaukee , 1900 E. Kenwood Blvd Milwaukee-WI 53211, USABulk hematite is a canted antiferromagnet at room temperature and displays weak magnetic coercivity above the Morin transition temperature T _M  ∼ 262 K. Below T _M , hematite displays traditional antiferromagnetic behavior, with no net magnetic moment or magnetic hysteresis. Here, we report that ellipsoidal nanocrystals of hematite (ENH) display a significant field-enhanced magnetic moment (FEMM) upon being poled by a magnetic field. This poled moment displays a giant coercive field of nearly 6000 Oe at low temperature. Atomic resolution transmission electron microscopy indicates that the nanocrystals are single crystalline, and that the surfaces are bulk-terminated. The apical terminations include the <001> sets of planes, which are implicated in possible formation of FM-arrangements near the surface. We tentatively suggest that FEMM in ENH could also arise from uncompensated surface spins or a shell of ordered spins oriented and pinned near the surface by a magnetic field. The gradual loss of magnetic moment with increasing temperature could arise as a result of competition between surface pinning energy, and kT. The large coercive field points toward possible applications for ENH in digital magnetic recording.https://doi.org/10.1088/2053-1591/1/2/026114magnetismnanocrystalshematititecoercive fieldcore-shell nanocrystalssurface pinning
spellingShingle Vikash Malik
Somaditya Sen
David R Gelting
Marija Gajdardziska-Josifovska
Marius Schmidt
Prasenjit Guptasarma
Field-enhanced magnetic moment in ellipsoidal nano-hematite
Materials Research Express
magnetism
nanocrystals
hematitite
coercive field
core-shell nanocrystals
surface pinning
title Field-enhanced magnetic moment in ellipsoidal nano-hematite
title_full Field-enhanced magnetic moment in ellipsoidal nano-hematite
title_fullStr Field-enhanced magnetic moment in ellipsoidal nano-hematite
title_full_unstemmed Field-enhanced magnetic moment in ellipsoidal nano-hematite
title_short Field-enhanced magnetic moment in ellipsoidal nano-hematite
title_sort field enhanced magnetic moment in ellipsoidal nano hematite
topic magnetism
nanocrystals
hematitite
coercive field
core-shell nanocrystals
surface pinning
url https://doi.org/10.1088/2053-1591/1/2/026114
work_keys_str_mv AT vikashmalik fieldenhancedmagneticmomentinellipsoidalnanohematite
AT somadityasen fieldenhancedmagneticmomentinellipsoidalnanohematite
AT davidrgelting fieldenhancedmagneticmomentinellipsoidalnanohematite
AT marijagajdardziskajosifovska fieldenhancedmagneticmomentinellipsoidalnanohematite
AT mariusschmidt fieldenhancedmagneticmomentinellipsoidalnanohematite
AT prasenjitguptasarma fieldenhancedmagneticmomentinellipsoidalnanohematite