A Note on Lower Bounds for Colourful Simplicial Depth

The colourful simplicial depth problem in dimension d is to find a configuration of (d+1) sets of (d+1) points such that the origin is contained in the convex hull of each set, or colour, but contained in a minimal number of colourful simplices generated by taking one point from each set. A construc...

Full description

Bibliographic Details
Main Authors: Antoine Deza, Tamon Stephen, Feng Xie
Format: Article
Language:English
Published: MDPI AG 2013-01-01
Series:Symmetry
Subjects:
Online Access:http://www.mdpi.com/2073-8994/5/1/47
Description
Summary:The colourful simplicial depth problem in dimension d is to find a configuration of (d+1) sets of (d+1) points such that the origin is contained in the convex hull of each set, or colour, but contained in a minimal number of colourful simplices generated by taking one point from each set. A construction attaining d2 + 1 simplices is known, and is conjectured to be minimal. This has been confirmed up to d = 3, however the best known lower bound for d ≥ 4 is ⌈(d+1)2 /2 ⌉. In this note, we use a branching strategy to improve the lower bound in dimension 4 from 13 to 14.
ISSN:2073-8994